即y2=12x+30.……………………………………………………..7分
(3)当y1<y2即12.6x<12x+30时,解得x<50;
当y1=y2即12.6x=12x+30时,解得x=50;
当y1>y2即12.6x>12x+30时,解得x>50.
综上所述,当购买奖品超过10件但少于50件时,买文具盒省钱;
当购买奖品超过50件时,买文具盒和买钢笔钱数相等;
当购买奖品超过50件时,买钢笔省钱..……………………………………………………..10分
【答案】(1)答:每个文具盒14元,每支钢笔15元.
(2)y1=12.6x;y2=12x+30.
(3)当购买奖品超过10件但少于50件时,买文具盒省钱;
当购买奖品超过50件时,买文具盒和买钢笔钱数相等;
当购买奖品超过50件时,买钢笔省钱.
【点评】本题考察了列二元一次方程组解实际问题,求一次函数的解析式和利用一元一次不等式组选择最优化的方案。解决此类问题时,关键是找到相等关系,列出方程组和函数关系式,在根据各种可能情况列出不等式并求解,得出最优化方案.
21.(2012山西,21,6分)实践与操作:如图1是以正方形两顶点为圆心,边长为半径,画两段相等的圆弧而成的轴对称图形,图2是以图1为基本图案经过图形变换拼成的一个中心对称图形.
(1)请你仿照图1,用两段相等圆弧(小于或等于半圆),在图3中重新设计一个不同的轴对称图形.
(2)以你在图3中所画的图形为基本图案,经过图形变换在图4中拼成一个中心对称图形.
【解析】解:(1)在图3中设计出符合题目要求的图形.
(2)在图4中画出符合题目要求的图形.
评分说明:此题为开放性试题,答案不唯一,只要符合题目要求即可给分.
【答案】答案不唯一,符合条件即可.
【点评】本题主要考查了考生轴对称图案的设计,并由小的轴对称图案设计成一个大的中心对称图案;难度中等.
专项十二方案设计型问题(42)
20.(2012四川省南充市,20,8分)学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车1辆小车共需租车费1100元.
(1)求大、小车每辆的租车费各是多少元?
(2)若每辆车上至少要有一名教师,且总组成费用不超过2300元,求最省钱的租车方案.
解析:(1)设大车每辆的租车费是x元、小车每辆的租车费是y元.根据题意:“租用1辆大车2辆小车共需租车费1000元”;“租用2辆大车一辆小车共需租车费1100元”;可分别列出方程,联立成二元一次方程组,再求解即可;
(2)根据汽车总数不能小于(取整为6)辆,即可求出共需租汽车的辆数;设出租用大车m辆,则租车费用Q(单位:元)是m的函数,由题意得出100m+1800≤2300,得出取值范围,分析得出即可.
答案:解:(1)设租用一辆大车的租车费是x元,租用一辆小车的租车费是y元,依题意,得:,解之,得:.
答:大、小车每辆的租车费分别是400元和300元.
(2)240名师生都有座位,租车总辆数≥6;每辆车上至少要有一名教师,租车总辆数≤6.故租车总数事故6辆,设大车辆数是x辆,则租小车(6-x)辆.得:
,解之,得:4≤x≤5.
∵x是正整数∴x=4或5
于是又两种租车方案,方案1:大车4辆小车2辆总租车费用2200元,方案2:大车5辆小车1辆总租车费用2300元,可见最省钱的是方案1.
点评:本题考查了二元一次方程组的应用,一元一次不等式的应用和理解题意的能力,关键是根据题目所提供的等量关系和不等量关系,列出方程组和不等式求解.
专项十二方案设计型问题(42)
18.(2012湖南益阳,18,8分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.
(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?
(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.
【解析】⑴设购进A种树苗x棵,则购进B种树苗(17-x)棵,根据购进A、B两种树苗刚好用去1220元得到80x+60(17-x)=1220解得x=10则B种树苗(17-x=7)棵;⑵由购买B种树苗的数量少于A种树苗的数量得到:17-x则购进A、B两种树苗所需费用为:80x+60(17-x)=20x+1020要形如最小,则需x取最小整数9,此时
17-x=8这时所需费用为20×9+1020=1200(元)。
【答案】解:⑴设购进A种树苗x棵,则购进B种树苗(17-x)棵,根据题意得:…1分
80x+60(17-x)=1220……………………………………………2分
解得x=10
∴17-x=7…………………………………………3分
答:购进A种树苗10棵,B种树苗7棵………………………………………4分
⑵设购进A种树苗x棵,则购进B种树苗(17-x)棵,根据题意得:
17-x……………………………………………6分
购进A、B两种树苗所需费用为80x+60(17-x)=20x+1020
则费用最省需x取最小整数9,此时17-x=8
这时所需费用为20×9+1020=1200(元).
答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需费用为1200元.
……………………8分
【点评】本题考查理解题意的能力,关键是设出A种树苗x棵,表示出B种树苗(17-x)棵,以购进A、B两种树苗刚好用去1220元做为等量关系列方程求解.⑵是不等关系,形如要取最小值,则要x最小,即可解决;列方程解应用题是中考必考查的内容。首先要认真审题,读懂题意,找出相等的数量关系,弄清楚题目中的关键字、关键词。然后列出符合要求的方程,本题中要求是一元一次方程;难度中等。
22.(2012四川省资阳市,22,8分)为了解决农民工子女就近入学问题,我市第一小学计划2012年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20:1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅.(课桌凳和办公桌椅均成套购进)