约数和倍数的意义数学教案(4)

时间:2021-08-31

【创新园地】

  1.兔子出生两个月后就能生一对小兔,这一对小兔两个月后又能生一对小兔。如果年初养了初生的一对小兔,一年后共有几对兔子(不考虑意外死亡)?

  2.有近3米长绳子,把它分别剪成长6厘米、8厘米或9厘米的短绳,结果都剩下3厘米,求绳长。

  3.有一张长为105厘米、宽为75厘米的大纸,裁成大小相同的小正方形纸,要求无多余。问至少可裁多少张?

  4.体育室有96根跳绳,如果不是一次拿走,也不是一根一根地拿走,要求每次拿走的根数同样多,而且正好取光,问共有多少拿法?

  参考答案:

  1.年初的一至兔子,到3月份生一对;到两个月后的5月份,年初的一对兔子和3月份生的一对兔子,2对兔子生2对;到7月份,4对兔子生4对;到9月份8对兔子生8对;到11月份16对兔子生16对;到第二年的1月正好一年,就有32对兔子生32对。

  解:1+1+2+4+8+16+32=64(对)

  答:一年后共有64对兔子。

  2.解:=72

  72×4+3=291(厘米)=2米91厘米

  答:绳长2米91厘米。

  3.解:(105、75)=15

  (105÷15)×(75÷15)=35(张)

  答:至少可裁35张。

  4.分析:根据题意求共有多少种拿法?与96的约数的个数有密切的关系。题中告诉我们如果不一次拿走,也不是一根一根地拿走。显然问题所求就是求96的所有约数个数去掉1和96这两个约数的个数的差。

  解:96的约数有:1、2、3、4、6、8、12、16、24、32、48、96共12个。

  12-1-1=10(个)

  答:共有10种拿法。

【同步题库】

  1.先口算,然后对符合整除意义的式子后面的括号里画“√”,对不符合整除意义的在括号里画“×”。

  93÷3= ( ) 19÷2= ( )

  3.5÷5= ( ) 4÷4= ( )

  7.4÷3.7= ( ) 4÷0.8= ( )

  2.填空

  (1)在20、4.8、92、、0、0.3、111、1中,( )是自然数,( )是整数。

  (2)写出小于9的所有自然数( );比5小而又不小于0的整数有( )。

  (3) 29的约数有( );36的约数有( )。

  (4)在30~50中6的倍数有( )。

  3.判断下面各题,对的画“√”,错的画“×”。

  (1)凡是能够除尽的一定能够整除。 ( )

  (2)自然数和零都是整数。 ( )

  (3)一个数的倍数都比它的约数大。 ( )

  (4)1是所有自然数的约数。 ( )

  (5)任何一个数都有约数。 ( )

  4.下面的每组数中,哪一个数是另一个数的倍数,哪个数是另一个数的约数。

  180和60 36和36 19和133

  5.把正确的答案填在括号里。

  (1)最小的一位数是( )

  ①0 ②0.1 ③1

  (2)一棵桃树上结了桃,表示桃的个数是( )。

  ①整数 ②分数 ③小数 ④自然数

  (3)下面三种说法正确的是( )

  已知a能整除7,那么a是( )

  ①14 ②必定是7 ③是1或7。

  (4) 73是73的( )。

  ①约数 ②倍数 ③约数也是倍数

  6.在下面的圈内填上适当的数

  16的约数 30以内的8的倍数 91的约数

  7.下图左图里的数能被右图里的哪些数整除?用直线连线来。

  8.既有约数5,又是2的倍数的最小三位数几?

  9.100以内除以2或除以5有余数的数一共有多少个?

  10.数a是60的约数,又是15的倍数,数a可能是几?

  11.根据已知条件,求出a、b的值。

  (1)已知:a÷b=3.5,a÷b=3……7

  求:a=( );b=( )

  (2)a÷b=3,a-b=16

  a=( ),b=( )

  12.在( )里填上最小的自然数。

【参考答案】

  1.(√) 2.(×)

  (×) (√)

  (×) (×)

  2.(1)(20、92、111、1)是自然数,(20、92、111、1、0)是整数。

  (2)小于9的自然数有(8、7、6、5、4、3、2、1);比5小而又不小于0的整数有(4、3、2、1、0)

  (3)29的约数有(1、29);36的约数有(1、2、3、4、6、9、12、18、36)

  (4)30~50中6的倍数有(30、36、42、48)

  3.判断题

  (1)(×)(2)(√)(3)(×)(4)(√)(5)(×)

  4.180是60的倍数,60是180的约数;36是36的倍数,36是36的约数;19是133的约数,133是19的倍数。

  5.选择题

  (1)最小的一位数是(1)

  (2)表示桃的个数是(自然数)

  (3)那么a是(1或者7)

  (4)73是73的(约数也是倍数)

  6.略 7.略

  8.既有约数5,又是2的倍数的最小数是10,10的倍数中最小的三位数是100,所以,既有约数5,又是2的倍数的最小三位数是100。

  9.这道题只要求出除以2或除以5没有余数的数有多少个,再用100减去这个数即可。

  除以2没有余数的数有100÷2=50(个),除以5没有余数的数有100÷5=20(个),其中除以2除以5都没有余数有100÷(5×2)=10(个),它们每10个数中出现一次。于是100以内除以2整除以5没有余数的共有50+20-10=60(个)。那么100以内除以2或除以5有余数的数就应该有:

  100-60=40(个)

  10.数a可能是15、30、45、60。

  11.(1)a÷b=3.5得知a是b的3.5倍,a÷b=3……7,可知a比b的3倍多7,而b的3.5倍又比它的3倍多0.5倍,0.5倍与7相对应,可以求b

  b=7÷(3.5-3)=14,a=14×3.5=49

  (2)a÷b=3,得知a是b的3倍,又知a-b=16,也就是a比b多16,此题是差倍问题。先求b,再求a。

  b是16÷(3-1)=16÷2=8

  a是8×3=24

  12.

【约数和倍数的意义数学教案】相关文章:

1.《约数和倍数的意义》数学教案

2.约数和倍数的意义的教案

3.《约数和倍数的意义》教学设计及反思

4.约数和倍数的意义教学设计

5.《约数和倍数的意义》优秀教学反思

6.《约数和倍数》的数学教学反思

7.约数和倍数的练习题

8.《约数和倍数》教学反思范文