约数和倍数的意义数学教案(2)

时间:2021-08-31

【指点迷津】

  1.“整除”和“除尽”有什么联系和区别?

  在整数除法里,a÷b=c,除得的商c如果是整数,而没有余数,我们就说,a能被b整除,或者说b能整除a。如:15÷3=5,我们说15能被3整除,或者说3能整除15。

  在除法里,a÷b=c,数a、数b、以及商c不见得是整数,但没有余数,我们就说a能被b除尽,或者说b能够除尽a。例如,10÷4=2.5、1.5÷3=0.5、1.5÷0.3=5,都可以说被除数a能被除数b除尽。

  从上面可以看出,整除是限定在整数除法里的,而“除尽”就不一定限于整数除法。我们还可以用集合图表示其关系:如果a能被b整除,a就一定能被b除尽;反之,a能被b除尽,a却不一定能被b整除。即整除可以说是除尽,但除尽不一定是整除,整除是除尽的一种特殊情况。

  2.“约数”和“倍数”有什么关系?又有什么不同?

  如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。如12÷3=4,我们就说12是3的倍数,3是12的约数。不能说12是倍数,3是约数。由此可见,倍数和约数是相互依存的。

  为了说明它们的不同点,请看下表。

  个数

  最小

  最大

  一个数的约数

  有限

  是1

  是本身

  一个数的倍数

  无限

  是本身

  没有

  3.什么叫质因数?什么叫分解质因数?

  把一个合数分解成若干质数连乘积的形式,每一个质数就是这个合数的质因数。如:12=2×2×3,2、3叫12的质因数。

  分解质因数就是把一个合数写成若干质数连乘积的形式。如12=2×2×3。

  4.“0”是偶数吗?最小的偶数是几?

  能被2整除的数叫做偶数,因为“0”能被2整除,所以“0”是偶数。但在小学讲数的整除时,是在自然数的范围内,不包括“0”,所以我们可以不说“0”是偶数。

  最小的偶数是几?先要搞清范围,在自然数范围内,最小的偶数是2,到中学里学了负数就不存在最小的偶数了。

二、学海导航

【思维基础】

  1.举例说明什么叫整除?

  例如:20÷5=4,20能被5整除,或5能整除20。

  整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)。

  2.什么是约数和倍数?它们之间有什么关系?

  如果整数a能被整数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数。

  举例:20÷5=4,20能被5整除,我们就说20是5的倍数,5是20的约数。

  约数和倍数是互相依存的。

  3.找出60的约数,4的倍数。

  60的约数有:1、2、3、4、5、6、10、12、15、20、30、60。

  4的倍数有:4、8、12、16、20……

  从上面可以看出:一个数约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。

  一个数的倍数的个数是无限的,其中最小的倍数是它本身。

  4.说说下面的数哪些能被2整除?哪些能被3整除?哪些能被5整除?各自的特征是什么?

  21、54、65、204、280、58、83、114、75、320、87、155

  能被2整除的数有:54、204、280、58、114、320。

  能被3整除的数有:21、54、204、114、75、87。

  能被5整除的数有:65、280、75、320、155。

  由此可知:

  个位上是0、2、4、6、8的数,都能被2整除。

  一个数的各位上的数的和能被3整除,这个数就能被3整除。

  个位上是0或者5的数,都能被5整除。

  5.说出什么叫质数、什么叫合数并判断下面各数哪些是质数、哪些是合数。

  3、27、41、6、11、19、69、57、97

  一个数,如果只有1和它本身两个约数,这样的数叫做质数(也叫做素数)。

  一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。

  质数有:3、41、11、19、97

  合数有:27、6、69、57

  6.把下面各数分解质因数,并说出分解质因数的方法。

  12、15和20的最小公倍数是2×2×3×5=60。

  求两个数的最小公倍数,先用这两个数公有的质因数连续去除(一般从最小的开始),一直除到所得的商是互质数为止,然后把所有的除数和最后的两个商连乘起来。

【学法指要】

  1.三个连续自然数的乘积为什么一定是6的倍数?

  思路分析:因为任意三个连续自然数里,至少有一个是2的倍数和一个是3的倍数,而2的倍数与3的倍数的乘积,就必然是6的倍数。

  2.书架上有96本科技读物,如果不一次拿走,也不是一本一本地拿走,要求每次拿走的本数同样多,而且正好取光,问共有多少种拿法?

  思路分析:通过读题,便可理解题目的意思,就是求96的约数的个数是多少,而题目告诉我们如果不一次拿走,也不是一本一本地拿走,实际是要我们把1和96这两个约数扣除才是要求的答案。

  96的约数的个数:(5+1)×(1+1)=12(个)

  扣除约数1和96,则约数的个数是:12-2=10(个)

  答:共有10种拿法。

  3.在1~100的自然数中,既没有约数2,又没有约数3,还没有约数5的数,共有多少个?

  思路分析:在1~100的自然数中,把有约数2的数、有约数3的数、有约数5的数扣除,就是要求的答案的个数。

  在1~100的自然数中,

  有约数2的数有:100÷2=50(个)

  有约数3的数有:100÷3=33(个)……1

  有约数5的数有:100÷5=20(个)

  有约数2、3的数有:100÷(2×3)=16(个)……4

  有约数3、5的数有:100÷(3×5)=6(个)……10

  有约数2、5的数有:100÷(2×5)=10(个)

  有约数2、3、5的数有:100÷(2×3×5)=3(个)……10

  解:在1~100的自然数中,既没有约数2,又没有约数3,还没有约数5的自然数共有:100-=26(个)

  4.用0、2、4、5、7组成一个五位数,使这个数是除以5余4的最小的五位数。

  思路分析:用0、2、4、5、7组成的五位数有很多,如24570、24507、24057、20457……满足最小五位数这个条件的最高位上的数字必须是最小 的那个数字,而这五个数字其中最小的那个数字是0,0在这五位数中不能排首位,所以只能把2排在最高位打头。题目的要求是最小的五位数,千位上的数字必须是0,百位上是5,十位上是7,个位上是4。那么为什么百位上不是4呢?因为题目的要求是除以5余4。所以百位上的数字不能是4,只能把4放在个位上。

  解:用0、2、4、5、7组成的一个五位数,使这个数除以5余4,还须是最小的五位数,那只能是20574。

  5.一个长方体的3个侧面积分别为s1=20平方厘米,s2=15平方厘米,s3=12平方厘米。求这个长方体的体积是多少?

  思路分析:根据长方体6个面的特征,我们知道:每个长方体的6个面都是相对的两个面的面积相等。但是已知的3个面的面积都不相等,我们就可以推出:已知的3个面一定相交于一个顶点。这样,我们就可以画出这个长方体的图。

  然后把已知条件都标在图上,假设这个长方体的长、宽、高分别为a、b、c,s1=ab=20,s2=ac=15,s3=bc=12(如图所示)。求这个长方体的体积,必须知道这个长方体的长、宽、高各是多少。但是长、宽、高都没直接给出。不过,长、宽、高这三个数中,每两个数的乘积我们都知道,如果把每两个数的乘积再相乘,里面一定有三个数之积。我们仔细分析:ab×ac×bc,根据乘法的交换律和结合律,可以变换为(abc)×(abc)。如果我们能把3个侧面积的积,分成两个相同的数的乘积,问题就可以迎刃而解。abc就是长方形的体积。那么3个侧面积的乘积怎样分成两个相同的数相乘呢?把这几个相乘的数分解质因数。

  解: 20×15×12

  =2×2×5×3×5×3×2×2

  =(2×2×3×5)×(2×2×3×5)

  =60×60

  ∴abc=60

  答:这个长方体的体积是60立方厘米。