《数学史》读后感

时间:2021-08-31

《数学史》读后感

《数学史》读后感1

  今年的寒假出奇的漫长,在这漫长的寒假里,我读了一本我不怎么喜欢的书——《数学史》,为什么不喜欢呢?是因为我很多不懂,但是读着读着我就喜欢上了,《数学史》记录着人类数学历史发展的进程,读了它,我有一点肤浅的体会。

体会一:数学源自于与生活的需要与发展。

  书中写到:人类在很久之前就已经具有识辨多寡的能力,从这种原始的数学到抽象的“数”概念的形成,是一个缓慢渐进的过程。人们为了方便于生活便有了算术,于是开始用手指头去“计算”,手指头计数不够就开始用石头,结绳,刻痕去计计数。例如:古埃及的象形数字;巴比伦的楔形数字;中国的甲骨文数字;希腊的阿提卡数字;中国筹算术码等等。虽然每种数字的诞生都有不同的背景与用途,以及运算法则,但都同样在人类历史发展和数学发展起着至关重要的作用,极大地推动了人类文明的前进。

体会二:河谷文明和早期数学在历史的长河一样璀璨夺目。

  历史学家往往把兴起于埃及,美索不达米亚,中国和印度等地域的古文明称为“河谷文明”,早期的数学,就是在尼罗河,底格里斯河与幼发拉底河,黄河与长江,印度河与恒河等河谷地带首先发展起来的。埃及人留下来的两部草纸书——莱茵徳纸草书和莫斯科纸草书,还有经历几千年不倒的神秘金字塔,给后人诠释了古埃及人在代数几何的伟大成就,也给后人留下了辉煌的文化历史,而美索不达米亚在代数计算方面更是达到令人不可思议的程度。三次方程,毕达哥拉斯都是它创造的不朽的历史,在数学史上的地位是至关重要的。

  古人云:读史使人明智。读了《数学史》让我明白:数学源于生活,高于生活,最终服务于生活,运用于生活。

《数学史》读后感2

  此书是《数学史教程》的第二版,这本书还得到了诸多数学界有望人士的高度赞扬。嘉兴学院名誉校长,国际数学大师陈省身先生为此书惠赠了墨宝:了解历史的变化是了解这门科学的一个步骤。此外,吴文俊院士也在百忙中赶写了读后感,对《数学史概论》一书在数学史学科研究上的肯定,并称之“翻阅此书都会开卷有益并感到乐趣”。

  数学是一门历史性或者说积累性很强的学科,重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不仅不会推翻原有理论,而且总是包容原先的理论。所以说数学是历史最悠久的人类知识领域之一。因此也有数学史家认为“在大多数学科里,一代人的建筑为下一代所摧毁,一个人的创造被另一个人所破坏,但是有些学科就像数学,每一代人都在古老的大厦上添加一层楼”。

  作者是按如下的数学史分期为线索进行展开论述的:

一、数学的起源和发展;

二、初等数学时期;

  1、古希腊数学,2、中世纪东方数学,3、欧洲文艺复兴时期。

三、近代数学时期;

四、现代数学时期。

  此书从上古的巴比伦、希腊、中国、印度、阿拉伯,以至当代数学,对于数学的贡献与影响都有中肯的评论和解说。在原始社会,从原始的“数觉”到抽象的“数”概念的形成;随着计数的慢慢发展,

  出现了石子记数和结绳记事等记数方法;接着经验算术与几何法的发现;再在此基础上加工升华为具有初步逻辑结构的论证数学体系;随之发展而来的便是近代数学;之后数学的发展更是迅猛:微积分的创立,代数学的新生,几何学的变革......

  在很多人看来数学总是那么枯燥乏味的,没有多大的兴致看完这本书。而此书中作者不仅对数学史实有详尽而忠实的介绍,还借助各种例子来让读者理解,甚至加入了很多生动有趣的故事及奇闻轶事,例如阿基米德解决皇冠难题的故事,牛顿苹果落地的故事等等。读之趣味盎然,大大增强了书本的可读性。书中还写到了很多著名的数学家,并就其学术成就做了概括的介绍,尤其重要成就,不惜花了很多篇幅以详细说明。

  最后,作者还就数学与社会的关系及两者互相之间的影响发表了论述。他精辟地阐述为:数学的发展与社会的进步有着密切的联系,这种联系是双向的,即一方面,数学的发展依赖于社会环境,受着社会经济、政治和文化等诸多因素的影响;另一方面,数学的发展又反过来对人类社会物质文明和精神文明两大方面的影响。接着,作者从数学与社会进步,数学发展中心的迁移,数学的社会化三方面进行了展开说明。

  我想我本是数学系的学生,多少是得对数学史有所了解。虽没有过于仔细的拜读,但我想通过这次翻阅还是受益匪浅的。

《数学史》读后感3

  《数学史》一直是我最想读的一本书教学中我越来越觉得作为一个数学教师,数学史对我们有多少重要!于是我拜读了数学史。

  我知道了,数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这便使数学成为人类文化中最基础的工具。而在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。

  我知道了,第一次数学危机——你知道根号2吗?你知道平时的一块钱两块糖之中是怎么迸溅出无理数的火花的吗?正是他——希帕苏斯,是他首先发现了无理数,是他开始质疑藏在有理数的背后的神奇数字。从那时起无理数成为数字大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是,希帕苏斯却被无情地抛进了大海。不过,历史却绝对不会忘记他,纵然海浪早已淹没了他的身躯,我们今天还保留着他的名字——希帕苏斯!

  第二次数学危机——知道吗?站在巨人的肩膀上的牛顿,曾经站在英国大主教贝克莱的前面,用颤抖的嗓音述说者自己的观点,没有人相信他,没有人支持他,即便他的观点着实是今天的正解!数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。

  第三次数学危机——我们听过这个名字——罗素,但是紧跟在他的身后的两个字却是那么刺眼——“悖论”。“罗素悖论”的出现使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础。与此同时,歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。数学似乎是再也站不起来了。是的,罗素的观点似乎真的很有道理,危机产生后,数学家纷纷提出自己的解决方案,比如ZF公理系统。这一问题的解决到现在还在进行中。罗素悖论的根源在于集合论里没有对集合的限制,以至于让罗素能构造一切集合的集合这样“过大”的集合,对集合的构造的限制至今仍然是数学界里一个巨大的难题!不过,我们不能蔑视“罗素悖论”,换种说法,不正是这个“悖论”引起了我们的思考吗?不正是这个“悖论”使我们更有创造精神吗?

  我知道了,我们中国在数学上的成就也绝对不能忽视,从《九章算术》到《周髀算经》,中国传统数学源远流长,有其自身特有的思想体系与发展途径。它持续不断,长期发达,成就辉煌,呈现出鲜明的“东方数学”色彩,对于世界数学发展的历史进程有着深远的影响。