说课稿初中

时间:2021-08-31

【精品】说课稿初中3篇

  作为一名人民教师,总不可避免地需要编写说课稿,编写说课稿助于积累教学经验,不断提高教学质量。那么大家知道正规的说课稿是怎么写的吗?下面是小编整理的说课稿初中4篇,欢迎阅读,希望大家能够喜欢。

说课稿初中 篇1

  一、说目标

  1、使孩子理解和掌握平方差公式,并会用公式进行计算;

  2、注意培养孩子分析、综合和抽象、概括以及运算能力。

二、说重难点

  本节教学的重点是掌握公式的结构特征及正确运用公式、难点是公式推导的理解及字母的广泛含义、平方差公式是进一步学习完全平方公式、进行相关代数运算与变形的重要知识基础、

  1、平方差公式是由多项式乘法直接计算得出的:

  与一般式多项式的乘法一样,积的项数是多项式项数的积,即四项、合并同类项后仅得两项、

  2、这一公式的结构特征:左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;右边是乘式中两项的平方差,即相同项的平方与相反项的平方差、公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式、

  只要符合公式的结构特征,就可运用这一公式、例如

  在运用公式的过程中,有时需要变形,例如,变形为,两个数就可以看清楚了、

  3、关于平方差公式的特征,在学习时应注意:

  (1)左边是两个二项式相乘,并且这两上二项式中有一项完全相同,另一项互为相反数、

  (2)右边是乘式中两项的平方差(相同项的平方减去相反项的平方)、

  (3)公式中的和可以是具体数,也可以是单项式或多项式、

  (4)对于形如两数和与这两数差相乘,就可以运用上述公式来计算、

三、说教法

  1、可以将“两个二项式相乘,积可能有几项”的问题作为课题引入,目的是激发孩子的学习兴趣,使孩子能在两个二项式相乘其积可能为四项、三项、两项中找出积为两项的特征,上升到一定的理论认识,加以实践检验,从而培养孩子观察、概括的能力、

  2、通过孩子自己的试算、观察、发现、总结、归纳,得出为什么有的两个二项式相乘,其积为两项,因为其中两项是两个数的平方差,而另两项恰是互为相反数,合并同类项时为零,即

  (a+b)(a-b)=a2+ab-ab-b2=a2-b2、

  这样得出平方差公式,并且把这类乘法的实质讲清楚了、

  3、通过例题、练习与小结,教会孩子如何正确应用平方差公式、这里特别要求孩子注意公式的结构,教师可以用对应思想来加强对公式结构的理解和训练,如计算(1+2x)(1-2x),

  (1+2x)(1-2x)=12-(2x)2=1-4x2

  ↓↓↓↓↑↑

  (a+b)(a-b)=a2-b2、

  这样,孩子就能正确应用公式进行计算,不容易出差错、

  另外,在计算中不一定用一种模式刻板地应用公式,可以结合以前学过的运算法则,经过变形后灵活应用公式,培养孩子解题的灵活性。

四、说学法

  一、师生共同研究平方差公式

  我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子、

  让孩子动脑、动笔进行探讨,并发表自己的见解、教师根据孩子的回答,引导孩子进一步思考:

  两个二项式相乘,乘式具备什么特征时,积才会是二项式?为什么具备这些特点的两个二项式相乘,积会是两项呢?而它们的积又有什么特征?

  (当乘式是两个数之和以及这两个数之差相乘时,积是二项式、这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了、而它们的积等于乘式中这两个数的平方差)

  继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算、以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式、

  在此基础上,让孩子用语言叙述公式、

  二、运用举例变式练习

  例1计算(1+2x)(1-2x)、

  解:(1+2x)(1-2x)

  =12-(2x)2

  =1-4x2、

  教师引导孩子分析题目条件是否符合平方差公式特征,并让孩子说出本题中a,b分别表示什么、

  例2计算(b2+2a3)(2a3-b2)、

  解:(b2+2a3)(2a3-b2)

  =(2a3+b2)(2a3-b2)

  =(2a3)2-(b2)2

  =4a6-b4、

  教师引导孩子发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算、

  课堂练习

  运用平方差公式计算:

  (l)(x+a)(x-a);(2)(m+n)(m-n);

  (3)(a+3b)(a-3b);(4)(1-5y)(l+5y)、

  例3计算(-4a-1)(-4a+1)、

  让孩子在练习本上计算,教师巡视孩子解题情况,让采用不同解法的两个孩子进行板演、

  解法1:(-4a-1)(-4a+1)

  =[-(4a+l)][-(4a-l)]

  =(4a+1)(4a-l)

  =(4a)2-l2

  =16a2-1、

  解法2:(-4a-l)(-4a+l)

  =(-4a)2-l

  =16a2-1、

  根据孩子板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果、解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果、采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷、因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案、

  课堂练习

  1、口答下列各题:

  (l)(-a+b)(a+b);(2)(a-b)(b+a);

  (3)(-a-b)(-a+b);(4)(a-b)(-a-b)、

  2、计算下列各题:

  (1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);

  教师巡视孩子练习情况,请不同解法的孩子,或发生错误的孩子板演,教师和孩子一起分析解法、

  三、小结

  1、什么是平方差公式?

  2、运用公式要注意什么?

  (1)要符合公式特征才能运用平方差公式;

  (2)有些式子表面不能应用公式,但实质能应用公式,要注意变形、

  四、作业

  1、运用平方差公式计算:

  (l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);

  (3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);

  (5)(2x3+15)(2x3-15);(6)(0.3x-0.l)(0.3x+l);

  2、计算:

  (1)(x+y)(x-y)+(2x+y)(2x+y);(2)(2a-b)(2a+b)-(2b-3a)(3a+2b);

  (3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4)、