《三角形三边的关系》说课稿

时间:2021-08-31

《三角形三边的关系》说课稿

  《三角形三边的关系》进一步研究三角形的特征,即三角形任意两边的和大于第三边。以下是小编帮大家整理的《三角形三边的关系》说课稿,希望对大家有所帮助。

  《三角形三边的关系》说课稿篇1

  各位领导、老师:大家好!

  今天我说课的题目是《三角形三边的关系》。

  首先我对教材进行简单的分析:

一、说教材

  本节课内容是人教版义务教育课程标准实验教科书《数学》第八册第82页例3。这一内容是在学生初步了解三角形的定义的基础上,进一步研究三角形的组成特征。三角形三边关系定理不仅给出了三角形三边之间的大小关系,更重要的是提供了判断三条线段能否围成三角形的标准,熟练灵活地应用三角形的两边之和大于第三边,是数学严谨性的一个体现,同时也有助于提高学生全面思考数学问题的能力,它还将在以后的学习中起着重要的作用。

  新课标的精神,要改变学生学习的方式,让学生经历“数学化”、“做数学”等过程,并注重与生活实际紧密联系,学有价值的数学。引悟教育的目标,强调在教师的引导作用下,由“获得知识结论快乐”转变为“探究发现知识快乐”。依据新课标的精神、引悟教育的目标、学生的知识现状和年龄特点,以及这一教学内容在教材中所处的地位与作用,我制定了以下教学目标:

  (一)教学目标

  1、通过创设问题情景、实践操作、观察比较,初步感知三角形边的关系。

  2、学生通过动手实践、猜想验证、自主探索、合作交流发现三角形任意两边之和大于第三边。

  3、能判断给定长度的三条线段是否围成三角形,能运用三角形任意两边之和大于第三边这一知识解决生活中的简单的实际问题,感受到生活中处处有数学。

  4、通过学习发展学生的空间观念,使学生体验成功的喜悦,激发学生学习数学的兴趣。

  (二)教学重点

  探究发现三角形任意两条边的和大于第三边。

  (三)教学难点

  理解性质中的“任意两边”。

二、说教法

  新课程改革要求教师要由传统意义上的知识的传授者和学生的管理者转变为学生发展的促进者和帮助者;在教育方式上,也要体现出以人为本,以学生为中心,让学生真正成为学习的主人而不是知识的奴隶。因此,我主要采用了情境导入法、设疑诱导法、操作发现法等来组织学生开展探索性的活动,让他们在自主探索中,学习新知、经历探索、获得知识。

三、说学法

  有效的数学学习活动不是单纯的依赖模仿与记忆,而是一个有目的、主动建构知识的过程,为此我十分注重学生学习方法的指导,在本节课中,我指导学生学习的方法为:动手操作法、观察发现法、自主探究法、合作交流法。让他们在剪一剪、围一围、比一比、想一想、议一议等活动中提高能力,获得知识。

四、说教学程序

  为了突出重点,突破难点,达到已定的教学目标。我主要安排了以下的几个教学环节。

  (一)置境引入,使学生对三角形三边关系的探索成为一种需要。

  教育情境的设计,是引悟教育的`基础性工作,这种带有准备性的基础工作,直接关系到学生的学,同时也直接影响到学生的悟,以及悟的成果。基于这样的认识,在本节课开始,我结合学生已有知识与生活实际,创设了这样的数学情境:(课件出示小明上学的路线)小明去学校一共有几条路可走,走哪条路最近,为什么?这样的问题情境贴近学生的生活,学生凭着自己的生活经验,知道走哪条路更近,但却苦于表达不出其中蕴含的道理,就使得对于三角形三边关系的探索内化成学生的一种需要。(适时板书课题:三角形三边的关系)

  (二)联结感悟,经历、体验三角形三边关系的形成、发展过程。

  借鉴杜威“做中学”的思想,我在设计本课时,充分发挥学生主体精神,留有足够的时间和空间,让他们在猜想、质疑、验证、探究、测量、实践操作、问题解决等过程中得以发展。

  这个环节我安排了二个层次的操作活动:

  活动一、动手操作,大胆猜想

  为每位学生提供小棒,让学生用剪刀随意剪成三段,试着围三角形。在围的过程中,学生会出现能围成和不能围成两种情况。我抓住这一契机巧妙设疑:为什么都是三段小棒有的能围成一个三角形,有的不能够围成一个三角形呢?这里面隐藏着什么秘密?带着疑问开始活动二。

  活动二、小组合作,再次操作,深入探究

  每个小组用老师前面发放的四组小棒摆三角形,并做好记录。(出示表格)

  小棒长度(厘米)能或不能摆成三角形,任意两边的和是否大于第三边

  4、5、6 4+5○6 6+5○4 4+6○5

  2、5、6 2+5○6 5+6○2 2+6○5

  4、6、10 4+6○10 6+10○4 4+10○6

  2、3、6 2+3○6 6+3○2 2+6○3

  经过这两个操作活动后,我让学生观察表格结果,说一说不能摆成三角形的情况有几种?为什么?能摆成三角形的三根小棒又有什么规律?得出了“三角形两边之和大于第三边”的结论,从而初步认识了三角形三边的关系。接着提问“这样的归纳全面吗?”这使学生敏感的意识到这种表达可能有问题,问题出在哪呢?学生不得不深思。最后学生终于发现:三角形任意两边之和大于第三边。(板书:三角形任意两边之和大于第三边。)对“任意”二字的理解,使学生对三角形三边之间关系的认识得到了深化。

  (三)前后呼应,快乐生成

  有了前面的感悟,此时再回到第一环节中的情境,提出问题:通过实验,我们知道了三角形三条边的一个规律,你能用它来解释从小明家到学校哪条路最近的原因吗?让学生用自己的发现解释,使学生能把学到的知识运用于实际生活中,从而生成新知,生成能力,生成智慧。

  (四)构建模型、联系实际

  本着练习的设计要有针对性、典型性、层次性、趣味性的原则,我设计了以下几组练习题:

  1、教材P86第四题。

  在学生完成后,我继续提问:我们是否要把三条线段中的每两条线段都相加后才能作出判断?有没有快捷的方法?得出只要比较较短的两条线段之和是否大于第三边就可以判断能否围成三角形了。

  这一题的设计,不仅使学生巩固了基本的知识点,强化教学重点和难点,同时还提高学生对组成三角形的规律的认识,掌握了更好的判断方法——较小两条线段之和大于第三条线段便可构成三角形。

  2、教材P88第11题。

  题目:用长分别是4厘米、6厘米和10厘米的三根小棒,能摆出一个三角形吗?

  此题设计使学生对三角形三边关系进一步理解,加深“两边之和等于第三边时不能构成三角形”这个知识点的印象。

  3、思维拓展题

  题目:小猴盖新房,他准备了2根3米长的木料做房顶,还要一根木料做横梁,请你们帮他想一想,他该选几米长的木料最合适呢?

  这一题不仅充满趣味性,而且使学生思维得到进一步发展,同时也可以培养学生应用数学知识合理解决生活问题的能力。

  (五)延伸

  近下课时,我反问学生:这节课,你觉得自已学会了什么?还有什么地方不太理解?然后让学生发表意见,自己梳理一下今天所学习的知识。多找几个学生说一说,给他们充分展现自我的机会。

五、说板书设计{板书设计}

  三角形三边的关系

  小棒长度(厘米) 能或不能摆成三角形,任意两边的和是否大于第三边。

  4、5、6 4+5○6 6+5○4 4+6○5

  2、5、6 2+5○6 5+6○2 2+6○5

  4、6、10 4+6○10 6+10○4 4+10○6

  2、3、6 2+3○6 6+3○2 2+6○3

  三角形任意两边的和大于第三边

  这样的板书设计,力求突出教学重点,使学生一目了然。

  我的说课到此结束,谢谢大家!