平行四边形的面积教学反思三篇
本节课是在学生掌握了平行四边形的特征以及长方形,正方形面积计算的基础上进行的,以下是小编为大家带来的平行四边形的面积教学反思三篇,欢迎大家参考。
在整个教学过程本着以学生的发展为本的教学理念,让学生经历猜想——验证——得出结论活动,获得了成功的体验,学生的学习积极性和主动性得到了充分的发挥,同时也树立了自信心。
二、在这节课中,我设计了剪一剪、拼一拼、移一移等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。在此,我特别注意强调底与高应该是相对应的,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
另外,在课堂教学中主张以学生为主体,注重师生互动和生生互动。在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、生生之间的互动关系,产生教与学之间的共鸣。
由于课前的预设过高估计学生,导致习题配备难度有些大,个别学生完成不理想,我在以后的教学中要特别注意。
自己比较喜欢的数学课是几何学方面的,喜欢一些空间想象的,今天终于是学到了。今天和孩子们一起研究和学习了《平行四边形的面积》。
本节课是在学生掌握了平行四边形的特征以及长方形,正方形面积计算的基础上进行的,对于本节课的设计理念是主要让学生在自主探究和亲自经历的基础上进行对平行四边形的面积公式的一个探究。本节课的教学有如下的感受:
本节课的在开始的时候先让学生回忆了长方形的面积的计算公式,之后给出了平行四边形和学生一起复习了平行四边形的一些特征,然后给出了课本上的情境图,一个长方形花坛、一个平行四边形花坛为你能知道这两个花坛的面积吗?让学生观察图形,把学生的几何视野拓展到人类生活的空间,学生思维活跃,把能看到的图形到表达出来了,更有学生发现校门前的两个花坛,一个是平行四边形一个是长方形,我顺次让他们猜测两个花坛的大小,这时候学生说:“长方形的我们可以知道,只要量出长方形的长和宽就可以求面积了,可是对于平行四边形的就不会了”,为本节课的重点做了铺垫。这时候引出本节课的课题《平行四边形的面积》。然后让学生用数方格的的方法把两个图形做了比较、填表,暗示了平行四边形的面积和长方形的面积之间的联系,把两部分内容设计在同一张表格里引导学生从数量角度体会转化前后在长度和面积上的对应联系,为学生进一步探寻平行四边形的面积的计算方法做准备。在这一过程中我发现学生的语言表述不是很准确。在教学中注意让学生对自己的学习过程进行反思,当学生感到数方格的方法有局限性的时候,由此便会产生平行四边形面积的'计算的方向和思路。从而引出本节课的教学重点。
接下来,问:“平行四边形的面积怎么求?”给学生一个想象的空间,这时让学生想一想,在大家的七嘴八舌的汇报中,这时候绝大多数的学生都知道了做法,然后让学生小组共同探讨得出平行四边形的面积计算公式,在开始的时候,发现学生的思路很简单,只是把平行四边形沿一条高剪开,然后拼成一个长方形,从而找到长方形和平行四边形的联系。再就没有了其他的方法,然后我借助课件的演示,给学生做了一个提醒,然后孩子们才恍然大悟,原来还可以这样做的啊,然后让学生仿照老师的做法自己来做一遍,让学生一边操作,一边和同桌互相说一下自己的想法。然后再利用课件给孩子们做一次加深,让没有想到的学生能够看看更多的思路和方法。
在练习的设计中,层次感比较强,让学生在形式多样的联系中,加深对平行四边形的面积的应用和理解。
本节课的不足之处是:
1、学生自己动手做的时候,给与学生的时候比较短,教师包办的多,而且教师下学生做的时候总是时不时的插话,打断学生的思路。
2、在得出公式的时候,教师包办了,应用让学生自己通过自己的拼剪来观察原平行四边形和拼剪后的长方形作比较,从中发现他们之间的联系。最终让学生自己得出计算公式就更好了。
3、练习中没有设计公式的变化练习,应该加入一些有些变形的练习就更好了。
在再教的时候,我会把以上的一些不足之处都一一改正,让学生对平行四边形的面积的公式有更好的认识和理解。
总之,我感觉这节课是成功的,学生通过自己的合作探究找到了对于平行四边形的面积的解决方法。
《平行四边形的面积》一课是多边形面积的起始课,是后续三角形面积、梯形面积的基础。本课是在学生学习过长方形面积的基础上学习的,由于学生有了长方形面积的计算基础,只要学生能找到利用割补法把平行四边形转化成长方形的方法,这节课的重点就突破了。本节课我利用让学生比较两张纸片的大小,引出平行四边形面积的计算,让学生探究平行四边形面积的计算方法。
在以往的教学过程中,很多学生会出现“底×邻边”的错误做法,所以在教学设计时,我把这种情况进行了预设,但是在课堂上全班学生没有一个学生这么回答。由于担心学生在以后的练习中会出现类似错误,同时为了让学生明白不能用“底×邻边”的错误做法,在课堂上我主动提问学生为什么要用“底×高”而不能用“底×邻边”的方法呢?通过利用平行四边形框架进行演示,让学生明白,在平行四边形框架拉伸的过程中,底和邻边的长度没有变,但是平行四边形的面积在逐渐缩小。说明平行四边形的面积和底、邻边的长度没有关系。
为了让学生明白计算平行四边形的面积时底和高的对应关系,我设计了三个动手操作的环节。首先给学生出示一个底是5厘米、高是3厘米高的平行四边形,让学生思考,看到这个平行四边形你想到了什么图形?学生很容易就想到了长是5厘米,宽是3厘米的长方形。第二次给学生出示一个底为7.5厘米,高为4厘米,另一条邻边的高是6厘米,再让学生思考并动手操作这个平行四边形可以转化成什么样长方形,大部分学生直接说出是长是7.5厘米,宽是4厘米的长方形。有几个同学说可以沿着6厘米的高剪下来,也可以拼成长方形,只能说出长是6厘米,但不知道宽是多少。让学生明白不可能剪出长是7.5厘米,宽是6厘米的长方形。第三次给学生出示一个底是30厘米,高是15厘米,另一组边是18厘米,高是25厘米的平行四边形。学生分别想出了剪成长30厘米,宽是15厘米和长是25厘米,宽是18厘米的长方形。通过这三个环节,让学生明白计算平行四边形的面积时必需是底和高是对应关系,不能随便计算。
本节课的不足之处是,在课堂上自己说的太多,让学生思考回答的少,学生回答时还总是怕学生说不好,帮助学生说,在以后的教学中要多放手,学会耐心等待,学生的能力得到锻炼了,学生的积极性也会大大提高的。
【平行四边形的面积教学反思三篇】相关文章: