平行四边形的面积教学反思

时间:2021-08-31

平行四边形的面积教学反思

  教学反思对于老师发现问题及时纠十分重要。那么,下面是小编给大家整理收集的平行四边形的面积教学反思,供大家阅读参考。

  平行四边形的面积教学反思1

  1、深刻理解教材是有效课堂的基础

  教师如果没有深入地解读教材、领会编者的意图,而为了追求新意而过度改编教材内容,替换学习材料,往往会把数学知识固有的内涵丢掉,无法有效完成教学任务。这节课作为传统的教学内容,有那么多种讲法,教材为什么要这样编排和设计呢?

  教学之前,我觉得数方格对平行四边形面积公式的探究帮助不大,所以总想把它删去,节约出更多的时间来探究,但经过对教材的反复研读,我终于明白数方格在计算面积中的价值。

  这是一种直观的计量面积的方法,同时也是本节课学生新旧知识的连接点,学生在数方格的过程中很容易发现平行四边形的底,高和面积与长方形有着联系,为进一步的探究提供了思路。所以,深挖教材是有效进行教学设计的第一步。

  2、课堂环节的合理设计是有效课堂的保证

  教师除了对教材的准确把握,还要对学情进行深入的分析,只有对学生的认知起点和认识发展过程进行分析和研究,才能设计出有效促进学生发展的数学活动。

  教师首先要用简约的情境带学生迅速进入课堂,并引发一系列的数学思维活动。

  然后,教师要精心选择教学内容,合理设计教学形式,让课堂活动变繁为简,变杂为精在学生探究平行四边形面积公式时,教师放得多了,探究的效率必然低下,扶得多了,学生探究的空间会大大缩水,束缚学生的发展。

  因此,对于教师应该给予什么样的指导,需要教师根据学情来合理预设。

  3、数学思想方法的提炼是有效课堂的精髓

  让学生获得基本的数学思想方法是一小学新课程改革的新视角之一。数学思想方法的孕育犹如胎儿的发育,有一个从模糊到清晰,从未成形到成形再到成熟的过程,至于转化的思想,在本册中多次用到。

  如第一、二单元中,小数乘法和小数除法的计算,无不是把小数转化成学过的整数进行的。平行四边形在整个小学阶段的数学教学内容中是一个承上启下的图形,教师应该看到学生学习计算平行四边形的面积,方法的价值更大,通过学习割补转化的方法,为后面学习三角形面积、梯形面积、圆的面积埋下了伏笔。学生以获取知识为明线,以探究数学思想方法为暗线,明暗结合与总结时的画龙点睛。让数学思想方法该露脸时就露脸,使学生知其然,更知其所以然。

  教学是一门有遗憾的艺术,虽然我在课前对教学的各个环节作了精心的预设,但面对生成的时候,自己的处理依然有些草率。在让学生展示自己剪拼的作品时,当让学生展示完平行四边形沿顶点向对边作高和作任意高两种方法剪拼一个长方形后,有一个学生兴致勃勃地展示他沿平行四边形对角线剪开,通过平移得到一个新的平行四边形的方法,由于没有达到我们拼成学过图形的目标,当即我就简单地否定了,那个学生也尴尬地坐下了。

  课后,这个学生坐下时的表情还深深印在我的脑海中,这个学生有着大胆动手,敢于交流分享的学习态度。他让同学们更深刻地认识到为什么一定要沿高来剪开,这是多么值得表扬啊!细节成就完美,关注课堂细节,敏锐地发现教育契机,还需要我们教师不断学习,不断努力,不断总结。

  平行四边形的面积教学反思2

  《平行四边形的面积》这一课自己感触颇多,有成功中的喜悦,也有不足中的遗憾,总结本节课的教学,有以下体会。反思这节课,具体概括为以下几点:

  第一、创设问题情景,引起矛盾冲突,激发了学生的学习兴趣。

  第二、重视操作探究,发挥主体作用。

  为了引起学生的兴趣,我准备了一个可活动的长方形框架,如果把它拉成一个平行四边形,周长和面积有变化吗?怎样变化?如果任意拉这个平行四边形,你会发现什么?什么情况下它的面积最大?设计意图:通过这个拓展题目使学生体会平行四边形面积的变化,从而理解的更透彻,运用的更灵活。使学生在练习中思维得到发展,培养学生分析问题和解决问题的能力。

  第三、渗透“转化”的思想。

  “转化”是数学学习和研究的一种重要思想方法,在本节课的教学中,以学生的.探究活动为主要形式,教学过程由浅入深,由易到难,由具体到抽象,由感性认识到理性认识,步步深入,紧扣主题。同时渗透“转化”的思想,让学生掌握学习的方法,学会利用旧知识解决新的问题,形成积极主动的探究氛围。

  第四、联系实际设计习题,学习内容始终充满生活气息。

  存在的一些问题和困惑:

  1、应变课堂能力的教学机智不够灵活需要多锻炼。如新知猜想时耗时过多。

  2、学生数学知识的底蕴要加强。

  学生拿着平行四边形,不知道如何动手操作,把平行四边形转化成长方形。这也与我前面的铺垫、启发不到位有关,当学生不能独立作出来时,老师要及时给予指导和启发,可以这样启发:同学们看一看,平行四边形的高与底边是什么位置关系?如果能利用这一点来转化呢?沿着什么剪?

  就“平行四边形的面积”的教学而言,平行四边形的面积公式是什么,不是什么?平行四边形的面积为什么是“底×高”,为什么不是“底×邻边”?通过把平行四边形不断“拉扁”,引导学生逐步了解高与面积之间的内在联系,理解高对平行四边形面积的影响,在让学生获取知识的同时,悄然无声地渗透了函数思想。

  其实,澄清错误与建立正确认识同样重要。不急于引导学生对正确情况的接受,而更多地让学生自己在尝试解决问题的过程中发现问题,产生矛盾冲突,并引导学生参与对问题和错误的剖析。平行四边形面积为何是“底×高”,为何不是“底乘邻边”?疑问的解答,需要的是观察、比较、分析等充满挑战性的过程,在这样的过程中,学生一步步澄清平行四边形的面积“是什么,不是什么”,明白“这样才是正确的,那样为什么是错误的”,就会获得真正的数学理解,推理能力也能得到发展。“推拉转化后,面积发生变化”的表象得到强化,进一步澄清学生潜意识中“平行四边形的面积=底边×邻边”的错误认识。在不断地对比、交流过程中,错误经验得以纠正,模糊认识得以澄清,数学思维得以发展,创新意识和学习能力得以提升。

  但是在澄清与对比分析中,时间运用的也较多,对于“精讲多练”的目的没能达到。这种剖析,在日常教学中都是分多个课时进行,完全揉入一节课,甚至微型课,需要我思考如何从别处挪出时间出来,精心雕琢方有进步。

【平行四边形的面积教学反思】相关文章:

1.《平行四边形的面积》教学反思

2.平行四边形的面积教学反思三篇

3.人教版平行四边形的面积教学反思

4.小学数学平行四边形的面积教学反思

5.《平行四边形的面积》教学设计

6.《平行四边形的面积》教学反思三篇

7.《平行四边形的面积》教学反思范文

8.五年级平行四边形的面积教学反思