初中数学平方根说课稿

时间:2021-08-31

初中数学平方根说课稿范文(通用3篇)

  作为一名教师,就难以避免地要准备说课稿,说课稿有利于教学水平的提高,有助于教研活动的开展。优秀的说课稿都具备一些什么特点呢?下面是小编整理的初中数学平方根说课稿范文(通用3篇),希望对大家有所帮助。

  初中数学平方根说课稿1

  一、说教材

  本节课是在前面学习了乘方运算的基础上安排的,是下节学习算术平方根的前提,是学习实数的准备知识,有助于了解n次方根的概念,为学习二次根式作出了铺垫,提供了知识积累。

  这节课在内容安排上是先用实际例子引入了平方根及其概念,后半部分又在对平方与开平方进行比较的基础上找出了求一个数的平方根的方法,并通过2个例题巩固所学的概念,其中所选用的数字都比较简单,求解过程详细,可见其设计目的,并不着眼于计算,而在于巩固概念。因此,本课的重难点都是平方根的概念,而突破难点的关键是抓住平方根概念的本质特征,逐层深入,多角度展示。

  新课标明确提出,义务教育阶段的数学课程,要从数学本身的特点出发,从学生学习数学的心理规律和学生已有的知识经验出发,让学生经历一个实践、思考、探索、交流、解释、应用的学习过程,在获得对数学理解的同时,在思维能力,情感态度与价值观等多方面都得到进步与发展,因此,这节课教学三维目标就是:

  1、知识与能力目标:能让学生理解平方根和开平方的概念,能正确地读写有关平方根的式子。

  2、过程与方法目标:让学生经历从实际例子归纳出平方根概念的过程,理解概念的本质。

  3、情感态度与价值观目标:就是让学生体验数学与生活息息相关,从生活中来,到生活中去体验数学的作用与价值,使人人学到有用的数学。

二、说教法

  以前学生虽然学过乘方运算,但由于间隔时间太长,他们会有不同程度的遗忘,甚至有些概念已没了印象,同时也为了实现新旧教学方式和学习方式的接轨,结合本课特点,我采取了以下教学方法:

  (1)情境教学法:目的就是使学生尽快“走进课堂”,激发学生的兴趣,引发学生思考。

  (2)对比教学法:即把新旧知识,把二次方与平方根的概念,计算过程等对比起来进行教学。即使他们掌握了概念的本质,又完善了学生的知识结构,从而降低了学生的学习难度。

  (3)经验交流法:即使学生在独立练习、思考的基础上,学会与人交流,与人合作,经验共享。

三、说学法

  说到学法,有一份资料上说:一位美国教师在教学生画苹果时,提着一袋子苹果分给学生,让他们通过看,摸甚至咬上一口再画,学生们就画出了各种各样的生活中的苹果,自己的苹果,而不是老师的苹果,可见,学生才是学习的主人,我们应该把过程还给学生,让过程与结果并重。新课程也强调学生的学习应在教师的指导下,主动地、富有个xing地学习。据此学生的学法我定为小组交流合作法和自主学习法。这样,既能形成组内合作,组间竞争的学习氛围,又能为学生搭建一个展示个人魅力的平台。

四:说程序

  在设计思路上,我设计了四个环节

  (一)情境导入,发现问题。

  (二)合作交流理解的概念。

  (三)自主学习,完善自我。

  (四)综合训练,突出重点。

  (一)情境导入,发现问题

  首先,我用多媒体播放问题情境,即三个问题:

  (1)一个正方形桌面的边长是3尺,求这个桌面的面积是多少平方尺?

  (2)已知一个正方形的面积是9cm2,求它的边长。

  (3)如果一个正方形展厅的地面面积为50平方米,求它的边长。

  前两个问题很好直接回答,而第三个问题就会使学生产生思维上困惑,引发起学生的思考,导入平方根。

  (二)合作交流,理解概念

  这一环节是整节课的重点环节,首先,我设计了以下练习:

  1、填空:

  (1)32=(),(-3)2=(),(2)2=(),(-2)2=()02=()

  (2)()2=9,()2=4,()2=0

  (3)如果x2=9,则x等于多少?x2=呢?x2=0呢?

  (4)有没有一个数的平方等于负数的?

  2、想一想

  如果说x2=a时,x就做a的平方根,思考1题中的结果并完成以下填空:

  (1)正数的平方根有()个,它们互为()。

  (2)0有()个平方根,它是()

  (3)负数______平方根(填“有”或“没有”)

  学生通过对比交流,自主探究,很容易就可完成以上两题,对平方根本质的以及与平方的关系,也有了更深刻的认识,为突出重点,这个结论也是板书的内容。

  (三)自主学习,完善自我

  本环节涉及的主要是一些零碎的东西,难度不算太大,所以可以采取学生自学、教师辅导的方式进行,这里分两步进行:

  第一步:让学生自学课文中间部分的内容,并完成下列问题:

  试一试

  (1)正数a的正的平方根用符号()表示。

  (2)正数a的负的平方根用符号()表示。

  (3)x2=a中,x叫___,2叫______;中,2叫______,a叫_____

  (4)读作___________读作________±读作____________。

  (5)中的a应是_________数,能是负数吗?

  第二步:教师板书归纳。

  从而即很好地完成了平方根的读记教学,又使学生初步感受式子中a与的两个非负特征,利于算术平方根的教学。

  (四)综合训练,突出重点

  1、阅读122页最下面一小节的内容,并填空:

  ⑴在式子x2=a(a≥0)中,已知x求a是________运算。

  已知a求x是___________运算。

  平方与开平方互为__________。

  ⑵通过以上的学习,你怎样求一个数的'平方根?又如何来验证你求得的结果?

  让学生先独立解决⑴题,再小组交流⑵题的答案,找到解题的方法。

  2、例2,例3是对平方根概念的巩固与拓展,在例2中由于学生还不熟于平方根的表示方法,所以应在平方根的概念和±号上加以明确,而例3则要把握平方根概念的本质,根据该数的正负或0来确定其平方根,这部分内容可用板演或展台展示结果的方式进行,让学生独立完成,应给予恰当的评价。

  3、最后,我又设计了一道辨析题:在做一道求4的平方根的题目时,小明说:“4的平方根是2”,小红说:“4的平方根是-2”,小强说:“2是4的平方根”小芳说:“-2是4的平方根”,请问他们的说法正确吗?

  通过这道题目,使学生在熟悉平方根概念的基础上更加深理解,同时对以往五种运算中从未出现过的一题两解的现象作出了解释,使学生明白了一种整体与局部的关系,再一次突出了重点。

  (五)小结中,我用“我要说”的栏目,鼓励学生参与总结,发现学生的点滴进步,完善了学生的知识体系。

  (六)课下练习,照顾到学生之间的差异,又做到前后呼应,分两类:

  1、必做题:即课本练习题。

  2、选做题:解决引入中的问题,并说明答案的合理性。