方程说课稿范文(通用5篇)
作为一名教职工,就有可能用到说课稿,说课稿可以帮助我们提高教学效果。那么你有了解过说课稿吗?下面是小编为大家整理的方程说课稿范文(通用5篇),仅供参考,大家一起来看看吧。
一、教材分析
1、教材的地位与作用
本节课是解简易方程的第一课时,是在学生学习的四则运算及四则运算各部分间的关系和学生已具有的初步的代数知识(如:用字母表示数,求未知数x)的基础上进行教学。而今天学习的内容又为后面学习解方程和列方程解应用题做准备。今后学习分数应用题、几何初步知识、比和比例等内容时都要直接运用。所以本节课起着一个承上启下的作用,是教材中必不可少的组成部分,是一个非常重要的基础知识,所以它又是本章的重点内容之一。
2、教学目标的确定
根据学生已有的认知基础和教材的地位与作用,参照课标确定本节课的目标:
⑴使学生初步理解方程、方程解和解方程的意义,了解方程解和解方程的区别。
⑵理解方程与等式的关系,掌握解方程的一般步骤。
⑶培养学生的观察、抽象、概括能力。
3、教学重点、难点、关键点
根据教材内容和教学目标,我认为本节课的重难点是方程的意义及方程解等概念,解决重难点的关键是帮助学生从形象的平衡中认识抽象的等量,结合具体例子加深学生对概念的理解。
二、教学方法
本节课的教学对象是小学高年级学生,他们形象思维较好,但抽象思维还需要一个慢慢的训练过程,所以本节课我使用直观演示、观察、比较、启发引导,讲解与学生练习相结合的教学方法,在一连串的环节中充分地调动学生学习的主动性,培养学生良好的学习习惯。为了帮助学生理解,我准备使用天平、挂图等手段进行辅助教学。
三、学法指导
在教学中,我采用从直观到抽象,从一般到特殊的方式组织教学,让学生在观察、比较中学习,培养学生观察、抽象、概括能力,和善于思考、善于学习的良好习惯。
四、过程分析
本节课我准备按以下几个环节进行教学:
1、加强直观操作,使学生理解方程的含义。
一开始上课,我就直接通过天平演示,使学生利用平衡这一认知基础去认识等式,理解等式的实质意义,并在此基础上通过操作、演示,让学生用含有未知数的式子表示天平平衡关系,从而认识了含有未知数的等式。再出示篮球图,学生在观察图的基础上,充分利用已有知识,自主用含有未知数的等式表示篮球个数、单价、总价间的关系,有效地丰富了学生对含有未知数的等式的认识和理解。通过对等式的比较,让学生自主概括出方程的含义
2、结合实例进行比较,渗透集合思想
在等式与方程的关系的教学中,充分利用黑板上板书的等式和方程,让学生在认识等式和方程的基础上,引导学生自主画图,用图来形象直观地表示等式与方程的关系,从而深化学生对方程本质含义的把握,自然地渗透集合思想。
3、让学生在感性认识的基础上,培养学生的概括能力。
在讲解方程的解和解方程的意义时,我结合具体的实例,让学生在感性认识的基础上引导学生概括它们的含义,有效地促进学生抽象概念能力的培养。
4、范例讲解
讲解例1解方程时,是根据四则运算各部分之间的关系来求解,这样充分利用了学生已有的知识基础,又可以加深对加、减法之间、乘除法之间相互关系的理解,学生容易接受。教学时,我让学生自己说出推想过程,一边板书,一边指出解题步骤和书写格式,然后着重讲解检验的方法及书写格式,并根据课本上的“注意”强调说明虽然不要求每题都写出检验,但都要口算进行检验,使学生养成良好的学习习惯。
5、巩固练习
本节课我准备安排两次巩固练习。当学生了解了方程的意义和方程与等式的关系后,我让学生完成第“做一做”,目的是通过判断进一步加深学生对方程意义的理解。教学例1后,我让学生分组完成例1后面“做一做”,其目的是通过练习,巩固新知,掌握好书写格式以及检验方法。
6、小结
小结的目的是强化重点,巩固新知,培养学生良好的学习习惯。
我本节课说课的内容是直线的点斜式和斜截式方程。
新课标指出,学生是教学的主体。教师要以学生活动为主线。在原有知识的基础上,构建新的知识体系。我将以此为基础从教材地位和内容分析,教学目标分析,重点和难点分析,教法和学法分析,教学过程分析这几个方面加以说明。
一、教材地位和内容分析
直线方程初步体现了解析几何的实质——用代数的知识来研究几何问题。直线作为最常见的几何图形,在生产实践和生活应用中都有着广泛的应用。直线的方程是是解析几何的基础知识,对后续圆、直线和圆的位置关系、圆锥曲线等内容的学习,无论从知识上还是方法上都有着积极的作用。
二、教学目标分析
1、识记直线的点斜式和斜截式方程,了解其推导过程
2、会根据已知条件熟练求出直线的方程
3、培养学生主动探究知识、合作交流的意识
三、重点与难点分析
重点:会根据已知条件熟练求出直线的方程
难点:直线点斜式方程的推导
四、教法与学法分析
1、教法分析
遵循“教师的主导作用和学生的主体地位相统一的教学规律”,本节课通过教师点拨,启发学生自主探究来达到对知识的发现和接受。
2、学法分析
本节课所面对的是职高二年级的学生,这个年龄段的学生思维活跃,求知欲强,但思维习惯还有待教师引导。本节课从学生原有的知识和能力出发,教师将带领学生创设疑问,通过合作交流,共同探索,寻求解决问题的方法。
五、教学过程分析
根据新课标的理念,我把整个的教学过程分为几个阶段:
1、温故知新
上课前复习特殊角的正切值以及斜率的求法,为研究新课打下基础。
2、创设情境
直线是点的集合,求直线方程实际上就是求直线上点的坐标所满足的一个等量关系。因此在教学中我把探究的过程变成一个问题来进行。
问题:已知一直线过一定点,且斜率为k,则直线是唯一确定的,也就是可求的,怎样求直线L的方程?
3、探求新知
学生带着问题预习,分组讨论,合作交流,共同研究出直线的点斜式方程。教师巡视指导答疑。
在此基础上,找学生在黑板上讲解其推导过程,师生共同点评。
注:在求直线方程的过程中要说明直线上的点的坐标满足方程,也要说明以方程的.解为坐标的点在直线上,即方程的解与直线上的点的坐标是一一对应的。为以后学习曲线与方程打好基础。教学中让学生感觉到这一点就可以。不必做过多解释。
教师点明:上述方程是由直线上一点和直线的斜率确定的,叫做直线方程的点斜式方程。
4、深入探究
问题1:X轴所在直线方程是什么?与X轴平行的直线方程是什么?
通过这个问题让学生注意点斜式的特殊情况。
问题2:Y轴所在直线方程是什么?与Y轴平行的直线方程是什么?
通过这个问题让学生注意点斜式直线方程的使用范围:即在斜率存在的情况下才可以使用。
问题3:如果直线L的斜率为K,且与Y轴的交点坐标为(0,b),求直线L的方程。
通过这个问题引出直线的斜截式方程。
教师说明:我们把直线L与Y轴交点(0,b)的纵坐标b叫做直线L在Y轴上的截距。这个方程是由直线的斜率K与它在Y轴上的截距b确定,所以叫做直线的斜截式方程。
注:(1)截距可取任意实数,它不同于距离。
(2)斜截式方程中的K和b有明显的几何意义。
(3)斜截式方程的使用范围和斜截式一样。
5、应用举例
求下列直线方程:
(1)直线经过点P(1,2),倾斜角为 。
(2)直线经过点()
学生相互讨论,自主完成。教师深入学生中,了解其思路,纠正其错误,并规范书写过程。
6、反馈练习
P53:3、4,B组2
7、课堂小结
让学生谈谈本节课都学习了哪些内容
8、布置作业
必做题:A组2(2)、4
选做题:B组1