《3.1空间向量及其加减运算》说课稿

时间:2021-08-31

《3.1空间向量及其加减运算》说课稿范文

  摘要:本节课的内容是《空间向量及其加减运算》,选自普通高中课程标准实验教科书人教A版选修2-1第三章。本文就从教学内容和学生情况分析,教学目标设定,重难点设置,教学方式,教学过程以及教学反思等方面对这节课进行说明。

  关键词:空间向量;加减运算;学生

  一、教学内容和学生情况分析

  本节内容是第三章《空间向量与立体几何》的第一节,由于是起始节,所以这节课中也包含了章引言的内容。章引言中提到了本章的主要内容和研究方法,即类比平面向量来研究空间向量的概念和运算。向量是既有大小又有方向的量,它能像数一样进行运算,本身又是一个“图形”,所以它可以作为沟通代数和几何的桥梁,在很多数学问题的解决中有着重要的应用。本章要学习的空间向量,将为解决三维空间中图形的位置关系与度量问题提供一个十分有效的工具。本小节的主要内容可分为两部分:一是空间向量的相关概念;二是空间向量的线性运算。新课标对这节内容的要求是:经历向量及其运算由平面向空间推广的过程,了解空间向量的概念,掌握空间向量的线性运算。这节课的授课班级是高二的一个理科实验班,学生在高一时就学习了平面向量,能利用平面向量解决平面几何的问题。在平面向量的教学中,我始终注重与实数的类比、数形结合等数学思想方法的`渗透,不仅让学生清楚学什幺,更主要的是帮助学生理解为什幺学,怎幺学。基于此,设定了这节课的教学目标。

  二、教学目标

  1.理解空间向量的概念,会用图形说明空间向量的线性运算及其运算律,初步应用空间向量的线性运算解决简单的立体几何问题。

  2.学生通过类比平面向量的学习过程了解空间向量的研究内容和方法,经历向量及其运算由平面向空间的推广,体验数学概念的形成过程。

  3.培养学生的空间观念和系统学习概念的意识。

  三、教学重点与教学难点

  这节课的教学重点是空间向量的概念及线性运算。在由平面向量向空间向量的推广过程中,学生对于其相同点与不同点的理解有一定的困难,所以我将这节课的教学难点设置为体会类比的数学方法的应用。

  四、教学方式

  采用的教学方式是通过连续的五个探究问题,启发引导学生自主完成概念的探究过程,加减运算及运算律:交换律和结合律,紧紧围绕教学重点展开教学,并从教学过程的每个环节入手,努力突破教学难点。

  五、教学过程

  本节课分为5个环节:引入概念,概念形成,概念深化,应用概念,归纳小结。其中重点是概念的形成和概念的深化,实际教学时间25分钟。

  1.引入概念。在引入概念环节中,由一系列图片,吸引学生眼球,使学生对空间向量有个初步认识,明确空间向量无处不在,应用广泛。激发学生学习空间向量的兴趣,通过追问激发学生学习新概念的兴趣,并给出本节课具体的研究方向。这节课作为《空间向量与立体几何》一章的第一节课,希望让它也起到章节“导游图”的作用。

  2.概念形成。教师引导:主要是通过类比平面向量的方法,由学生自主探究空间向量的概念,由学生从定义、表示、方向刻画、大小刻画、特殊向量、向量间的特殊关系等方面探究空间向量的概念。师生小结:我通过问题串帮助学生将概念梳理清楚,让他们体会到空间向量与平面向量的概念完全相同,只是所处的环境不同而已。以前研究的向量都位于平面内,现在他们可以在空间中任意平移了。在这个过程中让学生明确空间向量的研究方法,体会数学的严谨性。接着利用两组动画,第一个是平面内和位移的例子,第二个是教师爬教学楼的楼梯,展示空间中和位移,使学生对空间向量的加法有个初步感知。然后通过提问让学生类比平面向量去定义空间向量的加法,减法运算,让学生进一步体会空间向量与平面向量之间的关系,突出教学重点。

  3.概念深化。简化运算就需要研究空间向量线性运算的运算律。问题:平面向量中学习过哪些线性运算的运算律?这些运算律是不是也可以推广到空间中去呢?咱们先来看看哪些可以直接由平面结论得到(PPT给出)。学生通过探究发现由于加法交换律和分配律都只涉及到一个或两个向量,可以看作同一平面上的问题,可由平面结论直接得出;而空间中任意三个向量可能不共面,所以加法结合律还需要重新证明。接着由学生自主完成对加法结合律的证明。这是本节探究的难点之一。教师小结:通过结合律的证明能培养学生的空间观念,他们还能进一步体会空间向量中的某些问题与平面向量中相应问题的不同之处。

  4.应用概念。在应用概念环节中,我设置了4道例题(PPT给出)。例1的设计意图,说明首尾相接的若干个向量的和向量是由起始向量的起点到终止向量终点的向量。如果回到起点,和为零向量。例2的设计意图是让学生初步应用空间向量的概念及其运算解决一些问题,平行六面体是空间向量加法运算的一个重要几何模型,需要加深对平行六面体的理解。同时通过例2让学生进一步猜想空间中任意一个向量是不是都能用这三个向量来表示,是不是空间中任意三个向量都能去表示别的向量,对这三个向量有什幺要求。这样为下一节的内容做铺垫。例3、例4的设计意图是帮助学生熟悉多边形法则,进一步巩固空间向量的线性运算。

  5.归纳小结。在归纳小结环节中为了培养学生归纳总结的意识和能力,我首先提问让学生自己总结,接着我根据学生的回答补充完善小结,总结空间向量的概念内容和研究过程,尤其强调在整个研究过程中都使用到的类比的推理方法,进一步突破这节课的教学难点。

  六、教学反思

  通过这节课的备课与教学我自己主要有以下几方面的收获。

  1.在概念课教学中教师作用的体现。这节课的知识本身是很容易的,对于学习程度好的学生自学应该也没有问题,那幺教师在这节课中的作用是什幺?我想作为教师,需要帮助学生从整体上把握知识脉络,关注这部分内容在整个数学知识体系中的地位和作用。这不仅能够让学生更加深刻地理解概念更加自如地运用概念,还能在这个过程中对学生进行数学思想方法的渗透。帮助学生站在一个更高的角度,站在数学发展的角度看问题,对学生的长远发展是有好处的。本节课设计的一个特点就是从整体上进行了设计,关注学生已有的认知结构,并在此基础上由知识浅层挖掘出其背后所蕴含的数学概念体系,强调类比的方法,这也是形成新的数学概念的重要方法之一。

  不足之处:①这节课的知识基础是平面向量的相关知识,而平面向量是学生在高一时学习的内容,时隔半年多之后学生对这部分知识遗忘非常严重,我们又没有时间再对平面向量作细致的复习,所以学生反应不是很快,重难点突破的有点吃力;②从自身专业素质来说,语言比较随意,不够专业,数学是严谨的学科,语言专业性急需提高。

  2.新课标对学生掌握知识螺旋上升要求的实现。在教学过程中,每一个空间向量问题的引入都以平面框架为基础,这是在学习新知识时对相关旧知识的一个复习、巩固与提高的过程。

【《3.1空间向量及其加减运算》说课稿范文】相关文章:

1.空间向量的数量积及其应用说课稿

2.分数加减混合运算说课稿

3.《小数加减混合运算》说课稿

4.《乘加减混合运算》的说课稿

5.加减混合运算教学设计

6.《加减混合运算》优秀教学反思

7.分数加减混合运算练习题

8.加减法简便运算练习题