分式方程说课稿

时间:2021-08-31

分式方程说课稿

  作为一名无私奉献的老师,时常需要编写说课稿,说课稿有利于教学水平的提高,有助于教研活动的开展。我们应该怎么写说课稿呢?以下是小编整理的分式方程说课稿,欢迎阅读与收藏。

分式方程说课稿1

  一 教材的地位和作用:

  本节内容从以前所学过的分式方程的概念出发,介绍分式方程的求解方法。

  跟这部分内容有关联的是后面列方程解应用题,学好这一节课,将为下节课的学习打下基础。

二、教学目标

  1.使学生理解分式方程的意义.

  2.使学生掌握可化为一元一次方程的分式方程的一般解法.

  3.了解解分式方程时可能产生增根的原因,并掌握解分式方程的验很方法.

  4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.

  5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想。

三、重点分析:本节重点是可化为一元一次方程的分式方程求解中的转化。解分式方程的基本思想是:设法去掉分式方程的分母,把分式方程转化为整式方程,这是分式方程求解的关键,因此转化过程中主要是找方程两边的最简公分母。

  难点分析:解分式方程学生容易出错,关键不能理解在方程变形的过程中产生增根的原因,对于八年级学生理解有一定的困难,可以结合实例让学生了解方程两边同乘的是整式,整式可能为零不能满足方程同解变换的原则,因此求解分式方程一定要验根。

四、教学方法:

  本 节内容从以前所学过的分式方程的概念出发,介绍分式方程的求解方法。再加上数学学科的特点,所以本节课采用了启发式、引导式教学方法。特别注重"精讲多练 ",真正体现以学生为主体。上新课时采用了启发、引导式的同时,针对学生的回答所出现的一些问题给出及时的纠正,在上课做练习时,除了让尽可能多的学生上黑板以外,自己还在下面及时的发现学生所出现的问题,比较典型的则全班讲评,个别小问题,个别解决。

五、教学过程

  (一)复习:

  (1) 什么叫分式方程?

  设计意图:主要让学生继续区分整式方程与分式方程的区别,为新授做铺垫,使学生能积极投入到下面环节的学习。

  (二)新授:

  (1)学生学习例题交流讨论,找两组同学到黑板上尝试解题。

  设计意图:通过学生对例题的合作研究,使每个学生对分式方程的解法有一个初步的认识,在此环节,鼓励同学大胆交流、发表自己的见解,同时学会聆听。培养同学们的合作意识。教师在此时对学生的问题要做出适当的评价,给同学以鼓励和引导。

  (2)、讲解例题:

  解:方程两边同乘x(x-2),约去分母,得

  5(x-2)=7x解这个整式方程,得

  x=5.

  检验:把x=-5代入最简公分母

  x(x-2)=35≠0,

  ∴x=-5是原方程的解。

  设计意图;在此环节,教师鼓励同学们亲自体验,激发学生的学习热情。在巩固解分式方程的基础上发展学生的归纳能力、张扬学生的个性。使教师真正成为学生学习的促进者。

  (3)议一议

  在解方程—— = —— - 2时,小亮的解法如下:

  方程两边都乘以X -2,得

  1 - X = -1 -2(X -2)

  解这个方程,得

  X = 2

  你认为X = 2是原方程的根吗?与同伴交流。

  教师小结:

  在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根

  验根的方法有:代入原方程检验法和代入最简公分母检验法.

  (1)代入原方程检验,看方程左,右两边的值是否相等,如果值相等,则未知数的值是原方程的解,否则就是原方程的增根。

  (2)代入最简公分母检验时,看最简公分母的值是否为零,若值为零,则未知数的值是原方程的增根,否则就是原方程的根。

  前一种方法虽然计算量大,但能检查解方程的过程中有无计算错误,后一种方法,虽然计算简单,但不能检查解方程的过程中有无计算错误,所以在使用后一种检验方法时,应以解方程的过程没有错误为前提。

  想一想:解分式方程一般需要经过哪几个步骤?由学生回答。

  (4)教师归纳小结:

  解分式方程的步骤:

  1 在方程的两边都乘以最简公分母,约去分母,化为整式方程

  2 解这个整式方程

  3 把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程 的增根,必须舍去。

  (5)轻松完成:课堂练习:82页1、2

  (6)归纳总结、整理反思

  学生自己总结本节课的收获。教师引导学生不但总结知识上的收获,也要总结合作交流上,反思整堂课的学习体验。

  设计目的:引导学生从多角度对本节课归纳总结,感悟知识上的点滴收获,体验合作交流的快乐,反思自己。

分式方程说课稿2

  一、 教材的地位和作用

  本节内容从以前所学过的分式方程的概念出发,介绍分式方程的求解方法。跟这部分内容有关联的是后面列方程解应用题,学好这一节课,将为下节课的学习打下基础。

 二、教学目标

  1.让学生理解分式方程的意义.

  2.掌握可化为一元一次方程的分式方程的一般解法.

  3.了解解分式方程时可能产生增根的原因,并掌握解分式方程的验根方法.

  4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.

  5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想。

 三、重、难点分析

  本节重点是可化为一元一次方程的分式方程求解中的转化。解分式方程的基本思想是:设法去掉分式方程的分母,把分式方程转化为整式方程,这是分式方程求解的关键,因此转化过程中主要是找方程两边的最简公分母。难点分析:解分式方程学生容易出错,关键不能理解在方程变形的过程中产生增根的原因,对于七年级学生理解有一定的困难,可以结合实例让学生了解方程两边同乘的是整式,整式可能为零不能满足方程同解变换的原则,因此求解分式方程一定要验根。

四、教学方法:

  本节内容从以前所学过的分式方程的概念出发,介绍分式方程的求解方法。再加上数学学科的特点,所以本节课采用了启发式、引导式教学方法。特别注重"精讲多练",真正体现以学生为主体。上知识点复习课时采用了启发、引导式的同时,针对学生的回答所出现的一些问题给出及时的纠正,在做练习时,除了让尽可能多的学生上黑板以外,自己还在下面及时的发现学生所出现的问题,比较典型的则全班讲评,个别小问题,个别解决。

五、教学过程

  (一)复习

  (1) 复习什么叫分式方程?

  设计意图:主要让学生区分整式方程与分式方程的区别,使学生能积极投入到下面环节的学习。

  (2)解分式方程

  ①学生回忆解分式方程的基本思路和解分式方程的一般步骤,

  讲解例题:

  解:原方程可化为:

  方程两边同乘 ,约去分母,得

  (x+3)-8x=x2-9-x(x+3)

  解这个整式方程,得

  检验:把x=3代入最简公分母 (x+3)(x-3)=0

  ∴x=3是原方程的增根

  ∴原方程无解

  设计意图;在此环节,教师鼓励同学们亲自体验,激发学生的学习热情。在巩固解分式方程的基础上发展学生的归纳能力、张扬学生的个性。使教师真正成为学生学习的促进者。

  ②学习例题交流讨论,找两组同学到黑板上尝试解题。

  设计意图:通过学生对例题的合作研究,使每个学生对分式方程的解法进一步的认识,在此环节,鼓励同学大胆交流、发表自己的见解,同时学会聆听。培养同学们的合作意识。教师在此时对学生的问题要做出适当的评价,给同学以鼓励和引导。

  ③我还设计了几个小题让同学们思考分式方程解的情况

  设计意图:让学生理解在知道分式方程的根的情况下求式中字母的值

  教师小结:

  在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根

  (二)大显身手

  设计意图:巩固

 六、课内小结

  1、这节课我们学习了什么?

  2、提一个问题文