作为一名为他人授业解惑的教育工作者,时常需要准备好教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。怎样写教学设计才更能起到其作用呢?下面是小编收集整理的北师大版五年级下册《分数除法(一)》教学设计,欢迎大家分享。
一、教学内容:
分数与除法,教材第65、66页例1和例2
二、教学目标:
1.使学生理解两个整数相除的商可以用分数来表示。
2.使学生掌握分数与除法的关系。
三、重点难点:
1.理解、归纳分数与除法的关系。
2.用除法的意义理解分数的意义。
四、教具准备:
圆片、多媒体课件。
五、教学过程:
(一)复习
把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)
(二)导入
(2)把1块饼平均分给2个同学,每人几块?板书:1÷2=0.5(块)
(三)教学实施
1.学习教材第65页的例1。
(1)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=0.3(块)
(2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?
(3)指名让学生把思路告诉大家。
就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数3(1)来表示,这一份就是3(1)块。
老师根据学生回答。(板书:1÷3=3(1)块)
(4)如果取了其中的两份,就是拿了多少块?(3(2)块)怎样看出来的?
2.观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法
3.学习例2。
(1)如果把3块饼平均分给4个同学,每人分得多少块?(板书:3÷4)(2)3÷4的计算结果用分数表示是多少?请同学们用圆片分一分。
老师:根据题意,我们可以把什么看作单位“1"?(把3块饼看作单位“1”。)把它平均分成4份,每份是多少,你想怎样分?请同学到投影前演示分的过程。
通过演示发现学生有两种分法。
方法一:可以1个1个地分,先把1块饼平均分成4份,得到4个4(1),3个饼共得到12个4(1),平均分给4个学生。每个学生分得3个4(1),合在一起是4(3)块饼。
方法二:可以把3块饼叠在一起,再平均分成4份,拿出其中的一份,拼在一起就得到4(3)块饼,所以每人分得4(3)块。
讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)
(3)加深理解。(课件演示)
老师:4(3)块饼表示什么意思:
①把3块饼一块一块的分,每人每次分得4(1)块,分了3次,共分得了3个4(1)块,就是4(3)块。
②把3块饼叠在一块分,分了一次,每人分得3块4(1),就是4(3)块。
现在不看单位名称,再来说说4(3)表示什么意思?(表示把单位“1“平均分成4份,表示这样3份的数;还可以表示把3平均分成4份,表示这样一份的数。)
(4)巩固理解
①如果把2块饼平均分给3个人,每人应该分得多少块?2÷3=3(2)(块)
②刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)
③从刚才的研究分析,你能直接计算7÷9的结果吗?(9(7))
4.归纳分数与除法的关系。
(l)观察讨论。
请学生观察1÷3=(块)3÷4=4(3)(块)讨论除法和分数有怎样的关系?
学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)
用文字表示是:被除数÷除数=
老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。
(2)思考。
在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)
(3)用字母表示分数与除法的关系。
老师:如果用字母a、b分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?
老师依据学生的总结板书:a÷b=(b≠0)
明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)
5.巩固练习:
(1)口答:
①7÷13=()(())8(5)=()÷()()÷24=24(25)9÷9=()(())0.5÷3=3(0.5)n÷m=()(())(m≠0)
②1米的8(3)等于3米的()
③把2米的绳子平均分3段,每段占全长的(),每段长()米。
(2)明辨是非
①一堆苹果分成10份,每份是这堆苹果的10(1)()
②1米的4(3)与3米的4(1)一样长。()
③一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的3(1)。()
④把45个作业本平均分给15个同学,每个同学分得45本的15(1)。()(3)动脑筋想一想
①把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?
(用分数表示)
②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?
分数除法是在学生学习了整数乘除法以及解简易方程,并且学习了分数乘法知识的基础上,学习分数除法和比的初步知识。这些知识为学生学习分数除法打下了基础,学习分数除法的知识对加深学生对计算方法的理解和提高学生的计算能力有很好的作用。内容包括:分数除法、解决问题、比和比例的应用。这些知识都是学生进一步学习的重要基础,通过这些知识的学习,学生一方面基本完成任务了分数加、减、除的学习任务,比较系统地掌握了分数四则运算;另一方面又开始了比的初步知识的学习,为后面学习百分数和比例提供了基础。两方面的收获,都将在进一步的学习中发挥重要的作用。
就学习分数除法而言,首先要明确分数除法的运算意义,在此基础上探究并掌握它的计算方法,然后学习分数混合运算。关于分数除法中的解决问题,主要有两种情况,一种是问题情境的数量关系与整数除法的实际问题相同,区别只是数据由整数变成了分数。另一种是问题情境的数量关系具有一定的特殊性,表现为已知一个数的几分之几是多少,要求这个数。这样的实际问题,与求一个数的几分之几是多少的实际问题具有紧密的内在联系,即数量关系相同,而区别在于已知数与未知数交换了位置。
教学目标
知识和技能:
1、使学生理解倒数的意义,会求一个数的倒数。
2、使学生理解分数除法的意义,掌握分数除法的计算法则,能熟练地进行计算。
3、使学生能够用方程或算术方法解答“已知一个数的几分之几是多少,求这个数”的应用题,进一步提高学生解答应用题的能力。
过程与方法:
动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
情感、态度和价值观:
使学生进一步受到事物是相互联系的辩证唯物主义观点的启蒙教育。教学重点、难点:
一个数除以分数的意义以及计算方法,并会分数除法解决相关的问题。掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。
我们来看这样一道乘法应用题,妈妈在超市买了3盒糖果,每盒是100克,3盒糖果共重多少克?我们可以列式:100×3=300(克)
如果把这道乘法应用题改编成两道除法应用题,一起来看一下:A、3盒水果糖重300克,每盒有多重?300÷3=100(克)B、300克水果糖,每盒100克,可以装几盒?300÷100=3(盒)(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。1/10×3=3/10(千克)3/10÷3=1/10(千克)3/10÷1/10=3(盒)
通过与前三道题我们可以得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。
分数应用题是小学数学应用题的重要组成部分,分数应用题的数量关系比较复杂,学生分析起来比较困难。下面介绍几种解答分数应用题的常用方法:
一、对应法
通过审题正确判断单位“1”的量后,把具体数量与分率对应起来,这是解答分数应用题的关键。
如“某筑路队筑一段路,第一天筑了全长的1/5多10米,第二天筑了全长的2/7,还剩62米未筑,这段路全长多少米?”
题目中总长度是单位“1”的量,(62+10)米与(1—1/5—2/7)相对应,因此,总长度为:(62+10)÷(1—1/5—2/7)=140(米)。
二、变率法
题目中几个分率的单位“1”不相同,可先统一单位“1”的量,然后变换分率,寻找已知数量的对应分率,最终解决问题。
如“学校买了一批图书,高年级分得这些书的2/5,中年级分得余下的1/4,低年级分得180本,这批图书共有多少本?
该题中的“1/4”是把余下的本数看作单位“1”,而余下本数又是总本数的(1—2/5),因此,我们可以把中年级分得的本数理解为总本数的(1—2/5)×1/4,这样可求出总本数:180÷[1—2/5—(1—2/5)×1/4]=400(本)。
三、常量法
题目中几个数量前后都发生了变化,而有的数量不变,这就是常量,解题时可把常量看作单位“1”。
如“小华读一本书,已读页数占未读页数的1/5,如果再读30页,已读页数就占未读页数的3/5,这本书共有多少页?”
该题中再读30页后,已读页数与未读页数都在变化,唯独总页数没有变,把总页数看作单位“1”,则总页数为:30÷(3/3+5-1/1+5)=144(页)。
四、联系法
某些题目中几个数量都与一个数量有联系,把这个数量作为桥梁,解题思路就顺畅了。如“某小学四、五、六年级学生共种树576棵,五年级种树棵数是六年级种树棵数的4/5,四年级种树棵数是五年级种树棵数的3/4,五年级种数多少棵?”
题目中五年级种树棵数与六年级种树棵数有关,又与四年级种树棵数有关,所以,五年级种树棵数是个桥梁,把它看作单位“1”,把“五年级种树棵数是六年级种树棵数的4/5”改变为“六年级种树棵数是五年级种树棵数的5/4倍”,所以,五年级种树棵数为:576÷(1+3/4+5/4)=192(棵)。
五、转化法
将复杂问题中的某些条件进行转化,结合改变成简单的问题,从而化繁为简。
如“某工厂有三个车间,第一车间人数是其余两个车间人数的1/2,第二车间人数占其余两个车间人数的1/3,第三车间500人,三个车间共有多少人?
把“第一车间人数是其余两个车间人数的1/2”转化为“第一车间人数占三个车间总人数的1/1+2”,“第二车间人数占其余两个车间人数的1/3”转化为“第二车间人数占三个车间总人数的1/1+3”,这样,就能求出三个车间的总人数:500÷(1-1/1+2-1/1+3)=1200(人)。
六、假设法
对题目的某些数量作出假设,导致运算结果与题目不相符合,然后找出产生差异的原因,最终解决所求问题。
如“一项工程,甲、乙两队合做12天完成,现在先由甲队独做18天,余下的再由乙队接着做了8天正好完成,如果全工程由甲队独做,要多少天才能完成?”
假设甲、乙两队都做8天,则共做1/12×8=2/3,比工作总量“1”少1/3,这1/3就是甲队(18-8)天所做的工作量,所以甲队独做的时间为:1÷[1/3÷(18-8)]=30(天)。
七、倒推法
题目中几个分率的单位“1”不相同,而且单位“1”难以统一,可以先求部分量,再一步一步地逆推出总数。如“一捆电线,第一次用去全长的1/6多2米,第二次用去余下的3/4少4米,还剩16米,这捆电线有多少米?”
这题中两个分率的单位“1”均为未知量,我们可以从较小的单位“1”求起:(16-4)÷(1-3/4)=48(米),(48+2)÷(1-1/6)=60(米)。
八、方程法
一些复杂的分数应用题用算术方法难以解答,不便于理解,如用方程可顺向求解,容易掌握。如“一项工程,甲、乙两人合做8小时完成,甲独做14小时完成。现在甲做若干小时后,剩下的由乙接着做,前后共用18小时完成。求甲、乙各做多少小时?设甲x小时,则乙做(18-x)小时,根据两个人的工作量之和为1,可列方程:1/14x+(1/8—1/14)×(18-x)=1,解得×=2,18-2=16(小时)。