本节课是在学生学会用方程组表示问题中的条件以及能运用代入法、加减法解二元一次方程组的基础上,探究如何用二元一次方程组解决实际问题。
本节课的教学重点是让学生经历和体验用方程组解决实际问题的过程,抓住实际问题的等量关系建立方程组模型。教学难点是在探究过程中分析题意,由相等关系正确地建立方程组,从而把实际问题转化为数学问题。教学中,为了突破重难点,我主要让学生通过独立思考、自主探索、合作交流、估算验证等学习方式,在思考,交流等数学活动中,养成学生严谨的思维方式和良好的学习习惯,从而解决了生活中的三道实际问题:牛饲料问题,捐款问题以及红茶沟门票问题。在解决这些实际问题当中,我充分体现了以学生发展为本,让学生积极参与并且有效参与的新课程理念,在这样的理念指导下,我充分让时间留给学生,让讲台留给学生,让发现留给学生,注重学生情感价值观的培养,发扬教学民主,发挥了学生的主动意识,因此在学生解决(探究1)牛饲料问题当中,学生能想出三种列方程组的方法,这是我意想不到的收获,这是我实施新课程理念中的最大成功,学生能用多种方法解题,扩展了学生的思维,让学生体验解题时有方法,方法多,方法好。从而树立了学生学习的信心,激发了学生学习的积极性,让学生真正成为课堂的主人。
教学中,我还通过创设情境,使教学内容更加生活化,采用引发指导、多样评价、鼓励肯定等多种教学方法,增强学生的学习兴趣,让学生体验成功,从而培养学生分析问题、解决问题的能力。同时,我能改变传统教学的方法,跳出文本,活用教材。如:在探究1解决牛饲料问题中,我先让学生对平均每只母牛和每只小牛1天的食量进行估算,再寻求检验估算的方法,使学生明确把实际问题转化为数学问题,也就是用二元一次方程组解决,从而让学生体验方程组的实用性。同时,在这一过程中,让学生对估算与精确计算进行比较,从而明确估算有时会有误差,要想得到正确数据,需要通过用数学知识精算,让学生体会数学的应用价值,从而鼓励学生更好地学好数学。
不足之处:
1、 时间把握得不够好,使得“感悟与反思”这一教学环节没有得以实施。
2、 没有很好地关注极个别学生,以至于他们的积极性没能得以充分发挥
总之,从整节课来看,学生的情绪比较饱满,思维比较活跃。我能较好地完成了教学目标,学生注意力比较集中,对重点内容也都能掌握,感觉比以前所上的这节课效果要好。所以我想无论什么样的课只要在备课时能真正的将“备教材”“备学生”“用学生的眼光看教材”三者结合起来,那么我们就能将每一节课都上成学生不仅能学到知识,同时能主动参与其中的课,让数学课不在枯燥,不在死板,让学生在愉悦的心情中学到知识,成为学生喜爱的课。
这节课我们研究了实际问题与二元一次方程组中的行程问题,教学中,为了突破重难点,我主要让学生通过独立思考、自主探索、合作交流、估算验证等学习方式,在思考,交流等数学活动中,养成学生严谨的思维方式和良好的学习习惯,从而解决了生活中的几道实际问题。重点讨论了航行、相遇、追及三大类型。纵观本节课,其中有精彩之处,但也有很多不足,现反思如下:
航行问题很简单,在学习的过程中先回忆了航行问题中的基本公式,然后同学们讨论题目中的等量关系,最后设出未知数列出二元一次方程组,让同学们经历了回顾旧知、应用旧知解决问题的过程。 在讲解相遇问题与追及问题时,我选了两名同学分别相向而行和同向而行,表演了相遇和追及,让这两个问题动了起来,激发了学生的学习兴趣。然后用两种颜色的彩粉笔在黑板上分别来代表两个人,一边讲解一边画出两个人行走的路线,这样就将枯燥的代数问题转化为直观的几何问题,大家很容易就从图示中发现隐藏在其中的等量关系,从而列出二元一次方程组解决问题。
总之,从整节课来看,我主要通过创设情境、自主探究、合作交流、精彩点拨、拓展延伸、归纳升华六个环节来进行,学生的情绪比
较饱满,思维比较活跃,能积极分析问题解决问题。我较好地完成了教学目标,但还有一些有待探索与需要改进的地方,如:时间把握得不够好;在教学中,没有很好地关注极个别学生,以至于他们的积极性没能得以充分发挥,他们的各种方法没有及时的展示。今后,我还要多加努力,调整教学方法。
前言:
列方程解应用题是学生的一个困难问题。大部分学生见到字多的题目就会大脑一片空白。这种不良反应很可能会延续到函数的实际应用。这个方面的教学反思是很有必要及迫切需要的。
笔者从事教学12年来,一直在反思应用题对于学生的困难之处。开始的时候,总是觉得原因在于学生文字理解能力差,看不懂题目。其实,这和语文的文字理解能力关系不大,主要是和学生对题中的数量关系的理解有关。
一、一元一次方程实际应用困难
先举一个学生觉得很容易的例子:
例1、一个修路工程队已完成1700米的任务,预计每天修150米,还需多少天能完成2450米的总任务?
这个问题为什么简单?因为学生对每天修150米,x天修150x米这种倍数关系理解了,等量关系“已完成+预计完成=总任务”就好找了。
再举一个学生觉得有点困难的例子:
例2、小明有5角硬币和1元硬币共50枚,其中5角硬币比1元硬币的2倍多5枚。小明的两种硬币各有多少枚?他共有多少元钱?
学生易犯的设未知数的错误是:设两种硬币各有x枚。第二个错误是:设5角硬币有x枚,1元硬币有(2x+5)枚。如果解设对了,一般都不会列错方程。 这个题目绝对不存在阅读理解的困难,背景是学生很熟悉的。在教学中发现,几乎没有学生主动“设5角的硬币有x枚,则1元的硬币有(50-x)枚”。部分接受能力强的学生对这种设法接受很快,还有一小部分学生(学习态度较好)就不能接受。
我们再仔细想想,其实“设5角的硬币有x枚,则1元的硬币有(50-x)枚”所涉及数学思想与列一次函数关系式是很相似的,所以部分学生觉得有难度。倍
数关系很直接,学生易接受;这个关系用到一次逆向思维(加数=和–加数),所以难接受。
这个难点可以用列举表格的方法来解决:
这样,数量间的关系就很清晰的展示出来了。其实,在学习代数式时,学过用字母表示数,可是学生思维没有把两个知识点联系起来。
很多参考书都是这样总结列一元一次方程解应用题的一般步骤的。
第一步:审题,用一个字母如x表示题目的未知数;
第二步:找出一个相等关系式;
第三步:根据等量关系列出一元一次方程;
第四步:解这个方程,求出未知数的值;
第五步:检验,作答。
结合学生觉得困难的例2分析一下,第一步就不好办了,因为有两个未知量,却只能设一个未知数;第二步找一个相等关系,其实题中有两个相等关系。有些困难学生,第一个步骤都不能顺利完成,所以觉得难!虽然老师们都觉得这是个超级简单的题,它确实难住了一些学习态度较好的学生。老师的工作就是帮学生解决困难,我们需要学着学生的思维方式去理解他们。
二、二元一次方程组的实际应用困难
二元一次方程组的有关应用题在解设上没有什么困难,找相等关系列方程还是有很大困难。
也举个例子:
例3、2台大收割机和5台小收割机均工作2小时共收割小麦3.2公顷,3台大收割机和2台小收割机均工作5小时共收割6.5公顷。1台大收割机和1台小收割机每小时各收割小麦多少公顷?
这个题目已知数据很多,部分学生望而生畏。列出的方程常常丢三拉四。
参考书常这样总结列二元一次方程解应用题的一般步骤的。
第一步:认真审题,找出已知量、未知量(两个)以及等量关系(两个); 第二步:设未知量x,y;
第三步:根据等量关系(两个)列二元一次方程组;
第四步:解二元一次方程组;
第五步:检验,作答.
结合例3,分析一下学生觉得困难的地方。第一步,找出已知量、未知量容易,但找两个等量关系就不那么容易了。找不到等量关系,题就做不下去了。 我们可以发现,学生都是被“等量关系”难住的。不管设一个未知数也好,设两个未知数也好,只要找不到等量关系,方程就列不出来。
这个“害人”的等量关系还有一个致命伤——要用文字描述。以例3为例,请老师们自己把“等量关系”准确的表述一下,你会发现,几乎就是把题目重复了一遍。我们自己做这题,只会关注两个“共”字,不会把等量关系详细写出来。那为什么要学生去写或说呢?
反思,“等量关系”地位重要,但是它是否必须在第一时间出现呢?
三、两种讲解对比
以例3为例,对比“等量关系”在前和“等量关系”在后两种讲解方法。
例3、2台大收割机和5台小收割机均工作2小时共收割小麦3.2公顷,3台大收割机和2台小收割机均工作5小时共收割6.5公顷。1台大收割机和1台小收割机每小时各收割小麦多少公顷?
(一)“等量关系”在前
第一步:解:设1台大收割机和1台小收割机每小时各收割小麦x、y公顷,得: 第二步:找出相等关系: 大收割机工作量+小收割机工作量=总工作量 是不时所有学生都能准确找到这个等量关系能?
?2?2x?2?5y?3.2第三步:列出方程:? 5?3x?5?2y?6.5?
第四步:解出方程
第五步:检验,答
(二)“等量关系”在后
第一步:找出已知数据,建议学生在数据上作好标记(如圆圈)。
第二步:解:设1台大收割机和1台小收割机每小时各收割小麦x、y公顷,得: 第三步:分析每个已知数据和未知数的数量关系,顺序是从前往后。
如,看到第一个数据“2台”,想想它和x还是y有关系,它们之间存在那
种运算关系?学生很快会想到2x,接下来就是5y,这两个式子就是方程的雏形,再考虑2小时和3.2公顷,方程很容易就出来了:2(2x+5y)=3.2. 第四步:反思题中的“等量关系”
第五步:解出方程
第六步:检验,答
两种方法对比:
第一种方法,学生容易在第二步受困;
第二种方法把找“等量关系”分解为找“数量关系”,学生不那么容易受困;
第一种方法要求学生用文字描述“等量关系”,学生会觉得困难;
第二种方法在找数量关系的过程中,自觉地把等量关系用数学式子(方程)描述好了,学生不会觉得太困难;最后反思“等量关系”,加深对题目的理解。
四、“等量关系”在后的解题步骤反思
“等量关系”在后的列方程解实际问题的步骤:
第一步:认真读题,找出已知量与未知量;
第二步:正确设好未知数;
第三步:按顺序初步分析各个已知量与有关未知数的关系;
第四步:在初步分析的数量关系之间找到等量关系,列出方程(组)并反思等量关系的文字描述;
第五步:解方程(组);
第六步:检验,答。
这样的步骤,把找“等量关系”细化为找“数量关系”,按照已知数据出现的顺序,一个一个分析,把文字理解和数量关系紧密结合在一起。这样的步骤对列一元一次方程和列二元一次方程组都合适。这与波利亚的怎样解题表的思路是一致的。
笔者的教学感受是,“等量关系”在后的方式比较适合中等以下层次的学生。在反复强调这样的步骤后,学生就从不能动手,到动手画圈,再到设好未知数;动手之后,就开始思考,从列一半式子到列出方程。
希望本文能起到抛砖引玉的作用,引起更多的老师来反思实际应用类的教学策略,研究出一些实用的方法。