《重叠问题》教学反思范文(精选8篇)
身为一名人民教师,我们的工作之一就是课堂教学,借助教学反思我们可以拓展自己的教学方式,教学反思要怎么写呢?以下是小编为大家整理的《重叠问题》教学反思,希望对大家有所帮助。
一、创设问题情境,激发探索创新的兴趣
当我请学生仔细思考老师在选拔5名同学踢毽子和6名同学跳绳时可能遇到什么情况的时候,有些同学开始想到了重复选择的现象,从而初步对总人数是11人这个答案产生了初步的怀疑。接下来出示三(1)班的学生名单,让学生观察。从而找出重复的运动员,再问:现在你还肯定是11人吗?学生从当初的毫不犹豫到了犹豫不决。而我此时也没有及时给出答案,而又创设了另一个问题情境,让学生通过一次任务来引出韦恩图,在通过认识韦恩图各部分来计算总人数,从而使学生的思维的碰撞中得到发展。学生在一次次的肯定中,学习动机得到激励,进而产生更强的学习动机。
二、注重知识的形成过程,提供学生实践操作的机会
现代教育理论主张让学生动手去做科学,而不是用耳朵听科学。如果学生头脑中没有经历建模的过程,没有很好的直观依托,强塞给学生的东西也就形同如空中楼阁了。小学生思维发展的特点是:从具体形象思维为主要形式向抽象逻辑思维为主要形式过渡,小学低年级学生的思维虽然有了抽象的成分,但仍然是以具体形象思维为主。于是,借助直观图成了我这堂课突出重点和突破难点的重要策略。我通过以上过程让学生经历集合图的产生过程并充分感知体验集合图的作用,再解决问题。
三、注重解决问题方法的多样化,发展学生思维
不同的学生有不同的思维方式以及不同的发展潜能。教学中关注学生的这些个性差异,应允许学生存在思维方式的多样化和思维水平的不同层次。在探讨计算方法时,学生在算法时更多的是两部分相加再减去重叠部分,也有一部分同学是三部分相加求出总人数,还有一些同学用一部分减去重复人数再加另一部分。在这里我采取学生独立完成,教师巡视的方法。特别留意算法很特别的学生,给予他们表达的机会,体现了算法的多样性。新课改下的数学课不仅是让学生掌握固定的运算方法,也要发展学生的思维能力,让课堂焕发生命的活力。
“数学广角”(第一课时)是义务教育课程实验教科书人教版数学三年级下册开始新增设的一个内容,涉及的重叠问题是日常生活中应用比较广泛的数学知识。教材例1编排的意图是借助学生熟悉的题材,通过统计表的方式列出参加语文小组和数学小组的学生名单,和实际参加这两个课外小组总人数不相符合引起学生的认知冲突,渗透并初步体会集合的有关思想,并利用直观图的方式求出两个小组的总人数。
集合是比较系统、抽象的数学思想方法,针对三年级学生的认知水平,在这里只是让学生通过生活中容易理解的题材去初步体会集合思想,为后继学习打下必要的基础,学生只要能够用自己的方法解决问题就可以了,教学时老师不需要使用集合、集合的元素、基数、交集、并集等数学化的语言进行描述。本节课设计时我立足于培养学生良好的数学思维能力,从学生的生活经验和知识基础出发,创设问题情境,让学生通过观察、操作、实验、推理、交流等活动寻找解决问题的方法,从不同的方法中选择最优方案,在解决问题中初步体会数学方法的应用价值,初步体会集合思想。
综上分析,本课的教学目标定位为:
1、经历集合图的产生过程,使学生借助直观图利用集体的思想方法解决简单的实际问题。
2、使学生掌握解决重合问题的一些基本策略,体验解决问题策略的多样性。
3、培养学生善于观察、善于思考,养成良好的学习习惯。
“重叠问题”以前是属于数学兴趣课的内容,所以学生对它的掌握程度允许有差异性,即学生能掌握到什么程度就到什么程度,而现在是放在数学教材里,那么如何准确地把握教材,更好地完全教学要求,对我们来说是个挑战。
在设计教案前,我一直在想一个问题:如何使让学生水到渠成地去解决重叠问题,使学生不是在模式上会做,而是在理解上会做。如果学生头脑中没有经历建模的过程,没有很好的直观依托,强塞给学生的东西也就形同如空中楼阁了。
小学生思维发展的特点是:从具体形象思维为主要形式向抽象逻辑思维为主要形式过渡,小学低年级学生的思维虽然有了抽象的成分,但仍然是以具体形象思维为主。于是,“借助直观图”成了我这堂课突出重点和突破难点的重要策略。那么如何“借助直观图”呢?课堂初创设情境:森林里举行动物运动会,出示了参加跑步和参加跳高的两组动物信息,要求学生算算参加跑步和参加跳高的一共有多少种小动物,学生发现有几只小动物是重复的。于是,我设计了一个让学生用喜欢的方法画一画小动物参加比赛的情况,让学生经历集合图的产生过程并充分感知体验集合图的作用,把具体问题上升到抽象问题,再解决问题。
在第二个环节探讨计算方法时,学生在算法时更多的是三部分相加求出总人数,而不是两部分相加再减去重叠部分。再反思地去研读教材,发现对于教材的理解还是不够到位的,抛弃了题目中的数学信息,更多地强调集合圈的作用和理解,才引起了这个问题。在今后把握教材时,应该理解好主次的关系,更准确、到位地把握。
《重叠问题》是小学三年级下册数学广角第一课时的内容,这个内容是日常生活中应用比较广泛的数学知识,本节课涉及到一种最基本的数学思想方法:集合思想。集合是比较系统、抽象的数学思想方法,是数学中最基本的思想。从学生一开始学习数学,其实就已经在运用集合思想方法了,所以对集合有一定的生活经验和知识基础。本节课教材例1借助学生熟悉的题材,渗透了集合的有关思想,使学生理解用直观图(集合圈)表示“重叠现象”的方法,了解到直观图各部分的意义,特别是重叠部分(交集)的意义,从而掌握利用集合的思想方法来解决简单的实际问题的方法。课程实施后我有如下几点体会:
一、创设问题情境,设置认知冲突。
“知之者不如好知者,好知者不如乐知者”,从某种意义上来讲,教师教学中成败的关键很大程度上取决于能否激发学生对数学学习产生的浓厚兴趣。当学生解决参加两个课外小组一共有多少人时,由于直观思维,跳入了教师有意设置的“陷阱”,都回答出有17人,而教师适时指出不是17人,答案有了争议,学生的认知出现了冲突,学生都想正确的答案是多少。而老师此时创设了另一个问题情境,通过报名表让学生发现冲突的矛盾点,再让学生设计图案解决这个问题。从而使学生的思维得到了发展,提倡学生思维的开放性和创造性,鼓励学生根据自己的已有知识经验和独特体验,用自己的方法来发现创造。学生在一次次的肯定中,学习动机得到激励,进而产生更强的学习动机。
二、注重知识的形成过程,让知识的理解水到渠成。
本节课上,我尝试让学生从生活实际中亲身感知集合的思想,并使他们亲身体验集合图的产生过程,(从收集学生的名单——反馈整理好的名单——圈一圈,站一站——圈语文和数学兴趣组的名单——课件一步步演示集合的形成),让学生在过程中体验集合的思想,在过程中感悟重叠,让学生经历问题解决的数学化过程,从而获得数学学习经验。接着,创设了让学生自己设计图。学生设计的图各式各样。可见,创造源于实践,提供实践操作平台,激发学生学习数学的兴趣和热情的同时也培养学生的创新思维。当学生汇报自己独特的表示方法时,进而引导学生借助一种图(集合图)来理解解决这一问题,让学生经历集合图的产生过程并充分感知体验集合图的作用。通过让学生在情境体验中“学”、在解决问题中“悟”。调动了学生学习的主动性,激发了学生的竞争意识和表现意识,使学生发现问题、探索问题、解决问题的能力得到提高,思维也更加活跃。
三、在教学过程中注重学生思维的严密性
特别是在解读集合图时,让学生充分理解“参加……的,只参加……的,既参加……又参加……的”的含义。反思今天的教学过程,我觉得我还是比较注重培养学生思维的严谨严密性,本节课上有2次重点解读了韦恩图,第一次是韦恩图的形成初期,第二次是形成了规范的韦恩图后。在解读韦恩图的过程中,我很注重学生表述各个部分的意思。红色圈是表示“参加语文兴趣小组”和蓝色圈使表示“参加数学兴趣小组”,而去掉了都参加的部分后是“只参加语文兴趣小组的人数”,“只参加数学兴趣养和提高。
学生在一种民主、和谐、轻松的学习氛围中通过合作交流以及独立思考后,发现集合里面的重复问题,再在现实生活中解决集合的重复问题。通过解决问题,让学生体会到了“集合”这一基础数学思想在生活中实现运用,以及这一知识对解决我们生活的实际问题的重要性。让学生在不知不觉中把数学知识“带”进生活实际,体验到在生活中处处有“数学”,学生的思想也获得了新的发展。