教学“不等式组的解集”时,用数形结合的方法,通过借助数轴找出公共部分求出解集,这是最容易理解的方法,也是最适用的方法。为了更好的将教与学有机结合,提高课堂教学效率,数学网小编与大家分享《一元一次不等式》教学反思,希望大家在学习中得到提高。
不等式是刻画现实世界中量与量之间不等关系的有效数学模型,一元一次不等式是表示不等关系的最基本的工具,是学生学习其他相关数学知识的基础。
现行“苏科版”教材从身边的实际问题中建立不等式,从这些具体问题中的数量大小关系使学生了解不等式的意义,理解不等式相关概念,并探索了不等式的基本性质。
不等式的基本性质的教学,是分成两个阶段进行的。对不等式的基本性质,并不作证明,只引导学生用试验的方法,归纳出三条基本性质。通过试验,由特殊到一般,由具体到抽象,这是一种认识事物规律的重要方法。
不等式的基本性质的教学,还应采用对比的方法。学生已学过等式和等式的性质,为了便于和加深对不等式基本性质的理解,在教学过程中,应将不等式的性质与等式的性质加以比较:强调等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,所得到的仍是等式,这个数可以是正数、负数或零;而在不等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,当这个数是正数、负数或零时,对不等式的方向,有什么不同的影响。通过这样的对比,不但可以复习已学过的等式有关知识,便于引入新课,而且也有利于掌握不等式的基本性质。
解一元一次不等式的基础是一元一次方程的解法,两者基本类似,唯一不同的是不等式的两边同时乘以或除以一个负数时,不等号方向需要改变。在进行类比解一元一次方程与解一元一次不等式时既要说明它们的相同点,更要使学生明确它们的不同点,揭示各自的特殊性,从类比中进一步领会不等式的有关知识的特点和本质。
在应用不等式的基本性质对不等式进行变形时,学生对不等式两边是具体数,判定大小关系比较容易。因为这实际上是有理数大小的比较。对于不等式两边是含字母的代数式时,根据题给的条件,运用不等式基本性质判别大小关系或不等号方向,就比较困难。在教学过程中,对于这类题目,采用讨论法是比较好的。因为在讨论时,学生可以充分发表各种见解。这样,有利于发现问题,有的放矢地解决问题,有利于深化对不等式基本性质的认识。
本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛比较活跃。其中还存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步的完善自己的课堂。