三角形的内角和的教学设计

时间:2021-08-31

三角形的内角和的教学设计

  作为一位杰出的教职工,常常需要准备教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。如何把教学设计做到重点突出呢?以下是小编帮大家整理的三角形的内角和的教学设计,欢迎阅读与收藏。

  三角形的内角和的教学设计1

  教学内容:四年级下册第78~79页的例4和“练一练”,练习十二第10~13题。

教学目标:

  1.使学生通过观察、操作、比较、归纳等活动,发现三角形的内角和等于1800,并能应用这一知识求三角形中一个未知角的度数。

  2.使学生经历探索和发现三角形内角和等于1800的过程,进一步增强自主探索的意识,积累类比、归纳等活动经验,发展空间观念。

  3使学生在参与学习活动的过程中,形成互助合作的学习氛围,培养大胆猜想、敢于质疑、勇于实践的科学精神。

教学重点:让学生经历“三角形内角和等于180°”这一知识的形成、发展和应用的全过程。

教学难点:探究和验证“三角形内角和等于180°”。

教学准备:学生准备三角板一副、量角器;教师准备多媒体课件、信封里装三角形纸片若干。

教学过程:

  一、创设情境,产生疑问

  1.理解内角和含义。

  2.故事激趣

  提问:三兄弟围绕什么问题在争吵?你有什么看法?

  二、自主学习,合作探究

  1提出猜想。

  (1)计算三角板的内角和。

  (2)提出猜想。

  提问:通过刚才的计算,你能得出什么结论?有同学怀疑吗?

  指出:“三角形的内角和等于1800”只是根据这两个特殊三角形得到的一个猜想。

  引导:需用更多的三角形验证。

  2进行验证。

  (1)验证教师提供的三角形。

  测量:任意三角形的内角和。

  ①小组合作:用量角器量出信封里不同三角形的内角和。

  ②交流测量结果。

  ③提问:根据测量结果,你能得出什么结论?

  拼一拼:把一个三角形的三个角拼在一起。

  ①思考:除了量,还可以用什么方法验证呢?

  ②同桌合作:尝试把三个内角拼成一个平角。

  ③反馈不同的拼法。

  ④提问:既然三角形的三个内角能拼成一个平角,你能得出什么结论?有怀疑吗?

  解释误差问题。

  (2)验证学生自己画的三角形。

  学生任意画一个三角形,用自己喜欢的方法去验证。

  交流:自己画的三角形验证出来内角和是1800吗?有谁验证

  出来不是1800的吗?

  提问:你又能得到什么结论?还有怀疑吗?

  3得出结论。

  指出:三角形有无穷多,课上得到的还只是一个猜想。随着验证的深入,能越来越确定这个猜想是对的。

  说明:科学家们已经经过严格的论证,证明了所有三角形的内角和确实都是1800。

  解决争吵:学生用三角形内角和的知识劝解三兄弟。

  三、巩固应用,深刻感悟

  1.算一算:求三角形中未知角的度数。

  2.拼一拼:用两块相同的三角尺拼成一个三角形。

  思考:拼成的三角形内角和是多少?

  3.画一画:(1)你能画出一个有两个锐角的三角形吗?

  (2)你能画出一个有两个直角的三角形吗?

  (3)你能画出一个有两个钝角的三角形吗?

  四、全课总结,课后延伸

  1.学生自主总结一节课的收获。

  2.介绍帕斯卡。

  3.用三角形拼成四边形、五边形、六边形??引发新的问题。

  三角形的内角和的教学设计2

  总课时数:第15课时上课时间:2013年╳╳月╳╳日教学内容:p2829

教学目标:

  1让学生通过观察、操作、比较、归纳,发现“三角形的内角和是180o”。

  2让学生学会根据“三角形的内角和是180o”这一知识求三角形中一个未知角的度数。

  3激发学生主动参与、自主探索的意识,锻炼动手能力,发展空间观念。

教学重点:探索三角形内角和是180°

教学难点:探索三角形内角和是180°

教学准备:三角板,量角器、点子图、自制的三种三角形纸片等。

教学过程:

  一、交流展示

  老师取一块三角板,让学生分别说说这三个角的度数,再加一加,分别得到这样的2个算式:90o+60o+30o=180o,90o+45o+45o=180o

  看了这2个算式你有什么猜想?

  (三角形的三个角加起来等于180度)

  二、自主探索

  1画、量:在点子图上,分别画锐角三角形、直角三角形、钝角三角形。画好后分别量出各个角的度数,再把三个角的度数相加。

  老师注意巡视和指导。交流各自加得的结果,说说你的发现。

  2折、拼:学生用自己事先剪好的图形,折一折。

  指名介绍折的方法:比如折的是一个锐角三角形,可以先把它上面的一个角折下,顶点和下面的边重合,再分别把左边、右边的角往里折,三个角的顶点要重合。发现:三个角会正好在一直线上,说明它们合起来是一个平角,也就是180度。

  继续用该方法折钝角三角形,得到同样的结果。

  直角三角形的折法有不同吗?

  通过交流使学生明白:除了用刚才的方法之外,直角三角形还可以用更简便的方法折;可以直角不动,而把两个锐角折下,正好能拼成一个直角;两个直角的度数和也是180度。

  3撕、拼:可能有个别学生对折的.方法感到有困难。那么还可以用撕的方法。在撕之前要分别在三个角上标好角1角2和角3。然后撕下三个角,把三个角的一条边、顶点重合,也能清楚地看到三个角合起来就是一个平角——180度。

  小结:我们可以用多种方法,得到同样的结果:三角形的内角和是180o。

  三、精讲点拔

  三角形中,角1=75o,角2=39o,角3=()o

  算一算,量一量,结果相同吗?

  四、运用提升

  1、算出下面每个三角形中未知角的度数。

  在交流的时候可以分别学生说说怎么算才更方便。比如第1题,可先算40加60等于100,再用180减100等于80o。第2题则先算180减110等于70,再用70减55更方便。第3题是直角三角形,可不用180去减,而用90减55更好。

  指出:在计算的时候,我们可根据具体的数据选择更佳的算法。

  2一块三角尺的内角和是180o,用两块完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?

  可先猜想:两个三角形拼在一起,会不会它的内角和变成180×2=360o呢?为什么?

  然后再分别算一算图上的这三个三角形的内角和。得出结论:三角形不论大小,它的内角和都是180o。

  3用一张正方形纸折一折,填一填。

  4说理:一个直角三角形中最多有几个直角?为什么?

  一个钝角三角形中最多有几个直角?为什么?

  五、达标作业

  补充习题相关作业

  板书设计