三角形内角和的教学设计

时间:2021-08-31

三角形内角和的教学设计(通用5篇)

  作为一名为他人授业解惑的教育工作者,往往需要进行教学设计编写工作,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。如何把教学设计做到重点突出呢?以下是小编帮大家整理的三角形内角和的教学设计(通用5篇),仅供参考,大家一起来看看吧。

  三角形内角和的教学设计1

  【教学内容】

  《人教版九年义务教育教科书数学》四年级下册《三角形的内角和》

  【教学目标】

  1.使学生知道三角形的内角和是180,并能运用三角形的内角和是180解决生活中常见的问题。

  2.让学生经历量一量、折一折、拼一拼等动手操作的过程。通过观察、判断、交流和推理探索用多种方法证明三角形的内角和是180。

  3.培养学生自主学习、互动交流、合作探究的能力和习惯,培养学习数学的兴趣,感受学习数学的乐趣。

  【教学重点】

  使学生知道三角形的内角和是180,并能运用它解决生活中常见的问题。

  【教学难点】

  通过多种方法验证三角形的内角和是180。

  【教学准备】

  课件。四组教学用三角板。铅笔。大帆布兜子。固体胶。剪刀。筷子若干。

  【教学过程】

  一、激趣导入,提炼学习方法

  1.课程开始,教师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。激发学生的好奇心。然后自述:“你们好,我是一个有三十多年工作经验的老木匠了。我收了三个徒弟,他们已经从师学艺三年了,今天我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”

  2.继续以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。

  3.选择工具,总结方法。

  让选择不同工具的同学用自己的方法验证。教师随机板书:量一量、拼一拼、折一折。

  师:你们真是爱动脑筋的好徒弟,那么请听好师傅的第二个问题。

  4.导入新课。

  图中有很多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜欢的方法求一求三角形三个内角的和是多少?(板书课题:三角形的内角和)

  二、动手操作,探索交流新知

  1.分组活动,探索新知

  根据学生的选择把学生分成三组,分别采用量一量、折一折和拼一拼的方法探索新知。

  量一量组同学发给以下几种学具:

  折一折组同学发给上面的三角形一组。

  拼一拼组同学发给上面的三角形一组、剪刀一把还有下面这样的白纸一张。

  在学生探索的过程中教师要走近学生,与他们共同交流探讨,在学生有困难的时候要适当给予引导。

  2.多方互动,交流新知

  师:请我的大徒弟(量一量组)的同学先来汇报你们的研究成果。

  (1)首先要求学生说一说你们小组是怎样进行探究的。

  (2)说出你们组的探究结果怎样。(在此过程中教师不能急于纠正学生不正确的结论,因为这是知识的形成过程。)

  (3)请学生说说通过探究活动你们组得出的结论是什么。

  师:大徒弟就是大徒弟,汇报的真不错。二徒弟(折一折组)你们有没有更好的办法呢?

  引导这一组从探究的过程和结论与同学、老师交流。

  师:别看小徒弟(拼一拼组)这么小,方法可能是最好的。快来把你们的方法给大家汇报汇报。

  同样引导这一组从探究的过程和结论与同学、老师交流。

  3.思想碰撞,夯实新知

  师:三个徒弟你们能说说谁的方法最好吗?

  学生都会说自己的方法最好,再让其他同学发表自己的意见,此时生生之间,师生之间交流。(教师要引导学生说出量一量的方法可能由于量的不够准确,所以结果可能比180大一些,或小一些。而其他两种方法没有改变角的大小,所以他们的是正确的。)

  师:不论你量的怎样认真都会有不准确的地方,这就叫误差。而其他两组同学的方法更准确。三角形的内角和就是180。(板书:三角形的内角和是180)

  四、走进生活,提升运用能力

  1.出示课前那架柁标出它的顶角是120,求它的一个底角是多少度?

  2.给你三根木条,能做出一个有两个直角的三角形吗?

  五、总结

  师:徒弟们你们经过三年的苦学,终于学有所成了。今天,能说说你们在我这里都学到了什么手艺吗?

  六、拓展新知,课外延伸

  师:俗话说“活到老,学到老。”你们下山后还要继续探索,所以我要把我毕生都没有完成的任务交给你们去研究。

  大屏幕出示:

  能用你今天学过的知识和方法探索一下四边形的内角和是多少度吗?

  三角形内角和的教学设计2

  设计思路

  本节课我先引导学生任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再引导学生通过折角的方法也发现这个结论,由此获得三角形的内角和是180°的结论。概念的形成没有直接给出结论,而是通过量、算、拼、折等活动,让学生探索、实验、发现、推理归纳出三角形的内角和是180°。

  最后让学生运用结论解决实际问题,练习的安排上,注意练习层次性和趣味性,还设计了开放性的练习,由一个同学出题,其它同学回答。先给出三角形两个内角的度数,说出另外一个内角,有唯一的答案。给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。让学生在游戏中拓展学生思维。

  教学目标

  1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

  2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

  3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

  教学重点

  让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

  教学准备

  教具:多媒体课件、用彩色卡纸剪的相同的两个直角三角形、一个钝角三角形、一个锐角三角形。

  学具:三角形

  教学过程

  一、引入

  (一)认识三角形的内角及三角形的内角和

  师:我们已经学习了三角形的分类,谁能说说老师手上的是什么三角形?

  师:今天我们来学习新的知识《三角形内角和》,谁能说说哪些角是三角形的内角?(让学生边说边指出来)

  师:那三角形的内角和又是什么意思?(把三角形三个内角的度数合起来就叫三角形的内角和。)

  (二)设疑,激发学生探究新知的心理

  师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)

  生:能。

  师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

  师:有谁画出来啦?

  生1:不能画。

  生2:只能画两个直角。

  生3:……

  师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?那就让我们一起来研究吧!

  (揭示矛盾,巧妙引入新知的探究)

  二、动手操作,探究三角形内角和

  (一)猜一猜。

  师:猜一猜三角形的内角和是多少度呢?同桌互相说说自己的看法。

  生1:180°。

  生2:不一定。

  ……

  (二)操作、验证三角形内角和是180°。

  1、量一量三角形的内角

  动手量一量自己手中的三角形的内角度数。

  师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?

  生:可以先量出每个内角的度数,再加起来。

  师:哦,也就是测量计算,是吗?

  学生汇报结果。

  师:请汇报自己测量的结果。

  生1:180°。

  生2:175°。

  生3:182°。

  ……

  2、拼一拼三角形的内角

  学生操作

  师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?

  生1:有。

  生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

  师:怎样才能把三个内角放在一起呢?(学生操作)

  生:把它们剪下来放在一起。

  师:很好。

  汇报验证结果。

  师:通过拼合我们得出什么结论?

  生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。

  生2:直角三角形的内角和也是180°。

  生3:钝角三角形的内角和还是180°。

  课件演示验证结果。

  师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)

  师:我们可以得出一个怎样的结论?

  生:三角形的内角和是180°。

  (教师板书:三角形的内角和是180°学生齐读一遍。)

  师:为什么用测量计算的方法不能得到统一的结果呢?

  生1:量的不准。

  生2:有的量角器有误差。

  师:对,这就是测量的误差。

  3、折一折三角形的内角

  师:除了量、拼的方法,还有没有别的方法可以验证三角形的内角和是180°。

  如果学生说不出来,教师便提示或示范。

  学生操作

  4、小结:三角形的内角和是180°。

  三、解决疑问。

  师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)

  生:因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。

  师:在一个三角形中,有没有可能有两个钝角呢?

  生:不可能。

  师:为什么?

  生:因为两个锐角和已经超过了180°。

  师:那有没有可能有两个锐角呢?

  生:有,在一个三角形中最少有两个内角是锐角。

  四、应用三角形的内角和解决问题。

  1、下面说法是否正确。

  钝角三角形的内角和一定大于锐角三角形的内角和。()

  在直角三角形中,两个锐角的和等于90度。()

  在钝角三角形中两个锐角的和大于90度。()

  ④一个三角形中不可能有两个钝角。()

  ⑤三角形中有一个锐角是60度,那么这个三角形一定是个锐角三角形。()

  2、看图求出未知角的度数。(知识的直接运用,数学信息很浅显)

  3、游戏巩固。

  由一个同学出题,其它同学回答。

  (1)给出三角形两个内角,说出另外一个内角(有唯一的答案)。

  (2)给出三角形一个内角,说出其它两个内角(答案不唯一,可以得出无数个答案)。

  4、根据所学的知识算出四边形、正五边形、正六边形的内角和。

  五、全课总结。

  今天你学到了哪些知识?是怎样获取这些知识的?你感觉学得怎么样?