关于数学教学计划范文锦集八篇
时光飞逝,时间在慢慢推演,我们迎来了新的学习生活,请一起努力,写一份教学计划吧。为了让您不再为做教学计划头疼,以下是小编帮大家整理的数学教学计划10篇,希望对大家有所帮助。
一、指导思想:
深入研究备课、科学规范施教、认真精细批改、及时总结反思。
1. 教学总原则:
降低基点,面向全体;深化内涵,追求高效;拓展延伸,培养能力。
2.教学总目标:
稳定基础,转化边缘,培养优生,促进尖子,争创第一。
二、教材分析
本册教材在内容安排上突出了如下特点:为学生的数学学习构筑起点,向学生提供现实、有趣、富有挑战性得学习素材,为学生提供探索、交流得时间与空间,展现数学知识得形成与应用过程,满足不同学生的发展需求。再每一章数学知识的引入中,都由学生熟知得生活实例引入,注重学生通过观察、分析、综合、比较、抽象和概括来掌握知识,逐步学会运用归纳、演绎和类比得方法进行推理。
本学期的教学内容共七章:(一)生活中的轴对称 (二)勾股定理 (三)实数 (四)概率的初步认识 (五)平面直角坐标系 (六)一次函数 (七)二元一次方程组
(一)生活中的轴对称:本章立足于学生已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的有关特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引导学生逐步了解和领略轴对称现象的共同规律,认识有关轴对称的基本性质;同时,在简单的图案设计、镶边与剪纸等活动中,使学生进一步体会轴对称的应用价值和丰富内涵。
(二)勾股定理:为了使学生能更好地认识勾股定理、发展推理能力,教科书设计了在方格纸上通过计算面积的方法探索勾股定理的活动,同时又安排了用拼图的方法验证勾股定理的内容,试图让学生经历观察、归纳、猜想和验证的数学发现的过程,同时也渗透了代数运算与几何图形之间的关系。本章更多关注的是对勾股定理的理解和实际应用,而不追求计算上的复杂化。在学习了无理数之后,可以再利用勾股定理解决一些设计无理数运算的实际问题。
(三)实数:本章首先通过拼图活动和计算器探索活动,给出无理数的概念,然后通过具体问题的解决,引入平方根和立方根的概念和开放运算。由于在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值,为此,教科书安排了一节内容“方根的估算”,介绍估算的方法,包括通过估算来求它的近似值、检验计算结果的合理性等。最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算法则等。
(四)概率的初步认识: 教科书首先呈现二楼一个转盘游戏,通过试验与分析,使学生体会必然事件、不可能事件和不确定事件发生的可能性。然后,通过掷硬币的游戏,让学生了解事件发生的等可能性及游戏规则的公平性,并在大量做试验的过程中初步了解概率的意义,初步体会可以通过做试验来大致估计事件发生的可能性。通过大量试验,学生对频率与概率的关系会有初步的体验。
(五)平面直角坐标系: 本章力图以现实的题材呈现有关内容,以有趣的、有一定挑战性的问题呈现“由点找坐标、由坐标确定点的位置、建立简单的平面直角左边系”等内容,力图反映平面直角坐标系与现实世界的联系;通过“直角坐标系中的图形”呈现在现实生活中大量存在的图形变换,如电视屏幕上的各种画面处理等。对于确定位置的各种方式,本章通过形式多样的题材,将现实生活中常用的定位方法呈现在每个学生面前,其中既有反映极坐标思想的定位方法,也有反映直角坐标思想的定位方法。
(六)一次函数: 由于已经有了六年级下册的铺垫,本章教材在设计上进一步体现了“问题情境—建立数学模型—概念、规律、应用与拓展”的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进而探索出一次函数及其图像的性质,最后利用一次函数及其图像解决有关现实问题;同时改革了传统教材中先研究特殊的正比例函数,再研究一般的一次函数的教学顺序,将正比例函数纳入一次函数的研究中去。
(七)二元一次方程组: 本章教材弱化了概念,强调二楼建模思想。为了使学生经历知识的形成与应用的过程,本章首先通过丰富的实例建立二元一次方程,展现方程是刻画现实世界的有效数学模型,同时介绍二元一次方程、二元一次方程组的相关概念;接着,顺理成章地给出有关现实问题的解答,进而介绍解二元一次方程组的俩种基本方法——代入消元法、加减消元法;然后,通过几个现实问题情境,经行列二元一次方程组解决实际问题的训练。最后,通过对二元一次方程的解与一次函数图像的关系的讨论,建立方程与函数的联系,并得到二元一次方程组的图像解法。
三、学情分析
初二x班共有学生xx人,其中女生xx人,男xx人。由于xxxx,对于理性思维缺少优势,因此在教学活动中要多采用现实生活中的实例,深入浅出,通俗易懂,让她们能够理解。有些概念,学生会感动很陌生,因此在课堂上要激发学生的好奇心,提高兴趣,提高效率,保证质量。
在教学中,要努力培养学生的数学意识,采用小组合作的教学方法,在生与生的交流中提高学生分析问题、解决问题的能力,并能灵活运用知识解决身边的数学问题。结合初一的期末水平测试,细致分类,重点突出,抓好三类生和边缘生的辅导,争取教育教学有新的突破。
四、教学目标
1、在丰富的现实情境中,经历观察生活中的轴对称现象、探索轴对称现象的共同特征等活动,进一步发展空间观念。探索角的平分线、线段的垂直平分线的有关性质,掌握等腰三角形的轴对称性质。初步掌握尺规作图。
2、经历探索勾股定理及一个三角形是直角三角形的条件的过程,发展合情推理能力,体会数形结合的思想。掌握勾股定理,了解利用拼图验证勾股定理的方法。能运用判断直角三角形的条件解决一些实际问题,体会勾股定理的文化价值。
3、让学生经历数系的扩张、探求实数性质及其运算规律的过程;结合具体情境,让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力。了解方根及其相关概念;会用根号表示并会求数的方根。
4、经历“猜测——试验并收集试验数据——分析试验结果”的活动过程。了解必然事件、不可能事件和不确定事件发生的可能性大小,了解概率的意义,体会概率是描述不确定现象的数学模型,发展随机观念。进一步体会“数学就在我们身边”,发展“用数学”的意识和能力。
5、 经历探索图形坐标变化与图形形状变化之间关系的过程,进一步发展学生的数形结合意识、形象思维能力和数学应用能力。能在方格纸上建立适当的直角坐标系,描述物体的位置;能结合具体情境灵活运用多种方式确定物体的位置。
6、经历函数、一次函数等概念的抽象概括过程,体会函数的模型思想,进一步发展学生的抽象思维能力;经历一次函数及其性质的探索过程,在合作与交流活动中发展学生的合作意识和能力。初步理解函数的概念,理解一次函数及其图像的有关性质;初步体会方程和函数的关系。能确定一次函数表达式,会做一次函数的图像,并利用他们解决简单的实际问题。
7、经历从实际问题中抽象出二元一次方程组的过程,体会方程 的模型思想,发展学生灵活运用有关知识解决问题的能力,培养学生良好的数学应用意识。了解二元一次方程(组)的有关概念,会解简单的二元一次方程(组)。能根据问题,列二元一次方程组解决简单的实际问题,并能检验解的合理性。了解二元一次方程组的图像解法,初步体会方程与函数的关系。了解二元一次方程组的“消元”思想,从而初步理解化“未知”为“已知”和化复杂问题为简单问题的化归思想。
五、教学措施
1.教材是教学质量的保证,是教学的基础设施。在教学中必须依纲靠本,以教学大纲为指导,以教材为依据钻研教材抓好重点。认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。
2、兴趣是最好的老师,爱因斯坦如是说。设计好每节课的导入,激发学生的兴趣,引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。
3、加强知识的拓展与联系,把握好知识的开放度。积极参与听评课活动,向优秀教师取经,以先进的理念进行教学。
4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本。
5.坚持因材施教原则,利用小组合作,实施分层教学,力求使尖子生吃饱、优秀生吃好、上线生吃得下。优化作业设计,及时批改辅导。
6.精心设计单元复习测试题,全批全改,查漏补缺,认真上好习题讲评课。注重教授知识的基础性、灵活性和综合性,积极探究所授知识与社会、生活、科学、技术的联系。
7.充分利用各种活动对学生进行“数学来源于生活,学数学服务社会”的思想教育。
六、教学进度
章节
周数安排
(一)生活中的轴对称
第1至3周
(二)勾股定理
第4至5周
(三)实数
第5至6周
(四)概率的初步认识
第7至8周
期中考试
第9周
(五)平面直角坐标系
第10至12周
(六)一次函数
第13至15周
(七)二元一次方程组
第16至17周
复习第第五至第七章
第18至20周
期末考试
第21周