研究生学位课《弹性力学及有限元》的创新教学研究论文

时间:2021-08-31

研究生学位课《弹性力学及有限元》的创新教学研究论文

  针对研究生学位课《弹性力学及有限元》理论性强,逻辑严谨、直观性差、抽象、难理解等基本特点,该文在教学内容、教学方法、教学手段三方面进行教学模式创新探索。将现代教学手段与传统教学模式有机结合起来,将专业知识与工程实例溶入到理论教学之中,使枯燥抽象的理论知识变得生动实际,从而激发学生的学习兴趣和创新能力。

  研究生学位课程《弹性力学及有限元》是一门理论性兼应用性极强的课程:一方面,理论性上,弹性力学的研究方法严密,基本概念及理论内容十分抽象,公式严谨难以理解,即使对一些简化的模型问题进行求解,通常需要大量的运用高数知识与理论,涉及微积分和常微分方程,更多运用偏微分方程相关思想与知识;另一方面,应用性上,弹性力学及有限元主要分析各种工程材料和工程结构在受力过后的变形状况,需要研究生对工程实例实践有自己的感性认识,能够将理论知识的分析与工程实际的例子联系起来。因此,该课程对研究生的高等数学的基础思想和工程背景要求高,属于研究生教学期间难度系数比较大的一门学科。

  该课程是机械工程专业必修的主干基础课程。涉及弹性力学平面问题(平面应力与平面应变)基本理论、直角坐标及极坐标求解、差分法和变分法、有限单元法、空间问题的基本理论等方面的内容,综合性强[1]。随着计算机技术的飞速发展,为弹性问题有限元法及弹塑性问题有限元法应用到机械工程的优化设计、制造分析提供了崭新途径和高效手段。例如:采用先进的计算机数值模拟技术,人们可以在短短十几分钟之内完成手工作业需要花费数周时间才能完成的工作,大大缩短了设计和试制周期[2]。如今几乎所有重要的机械产品和机械装备在研发阶段都必须采用数值方法进行计算分析,这已经成为探知复杂对象本质规律的定量分析手段。数字化的“虚拟试验”在研发时做到了高效率与低成本的完美结合,其大规模巨容量的工程计算模拟在研发中起到核心支撑作用。可见有限元方法作为一种成熟有效的分析手段,在科学研究、工程设计与研发制造中发挥了其无可替代的巨大作用。实现这些技术的关键之一,就是采用了CAD/CAE,而有限元分析技术则是其中的核心。可见对研究生培养来说,《弹性力学及有限元》是一门非常高端,非常重要、非常专业的课程。因此,在新的科技发展形势下,该学位课怎样在内容和体系上突出拓宽基础、提高应用能力培养,怎样把课程建设建成拥有新理念、重基础、突出应用技术、容易自学等特点的精品课程,使理论、实践、素质、创新和现代教育技术有机地结合在一起,是该课程改革和建设的目标。经过此课程的基础教授、课外作业、计算机模拟、课堂报告等教学环节,首先加深基础理论知识的掌握,熟悉一般实际实践中出现的受外力影响、边界条件、温度改变等因素而引发的应力变化、应变程度和位移量分析;其次加深理论结合实际,使学生通过虚功原理的位移法、力法、混合法及有限元数值模拟方法掌握工作实践中应用的分析和求解能力,为接下来的专业课学习和学术研究做好充分准备。

  在实践教学环节,由于没有足够的计算机实验教学平台,使得学生接触数值计算和参加实验的时间少、上课内容和实际工程没有直接联系,自然而然在学习过程中不能回避地产生一定困难,由于上述因素都很大程度影响和制约了研究生学习的积极性[3-4]。对于上述问题,除了教学中合理安排上课知识顺序、细致准备教案外,还应重点探讨教学模式的创新。可从以下几方面问题着手。

1 明确课程教学总体思路和目标

  高等教育的根本问题是:“培养什么人,怎样培养人”。它的培养目标是教师进行创新教学工作的出发点和行动指南。创新教育使大家深刻认识到,弹性力学及有限元课程的教学目标不是培养上机实验员,而是应该向社会输送具有较强的实践能力和创新能力的工程设计制造人才。因此,只有注重学生学习能力、思维能力、创新能力的培养,创新教育才能获得成功。

  创新教学课程《弹性力学及有限元》作为计算力学的主要方法已成为工程设计分析的最重要手段,大到航天飞机、船舶及海洋石油平台、重型机械、汽车制造业,小到产品结构设计分析、以及进行理论研究都需要使用这一成熟而又有效的方法。目前,就有限元分析本身而言,主要涉及以下几个方面:数值计算;力学基础;计算机应用;工程应用。因此,“物理建模+软件平台+工程应用对象”是弹性力学及有限元分析这门课的三个主要特征。因此,在教改中应努力做到:(1)力求反映上述三个方面的完整内容,达到“数值计算及力学基础→工程概念→有限元平台的使用→解决实际问题”的目标。(2)使研究生在弹性力学学习及有限元的数学理论分析基础方面有较深刻的理解,着重于方法论的多元融合来分析复杂工程问题,实践应用有限元分析的最新研究成果,力求解决一些实际的工程问题。(3)整合优化课程体系、进一步拓展弹性力学及有限元课程的深度、广度及应用。通过该课程教学模式的创新,带动和推进其他相关课程的建设和发展,不断提高教学质量,培养研究生综合学习与开拓创新能力。

2 教学方法创新

  (1)重新设计课程体系,依照弹性力学及有限元技术的最新发展趋势,修改完善教学大纲,努力实现理论教学与实践教学的融合。

  (2)采用启发式的教学方法,要求该课程的教学内容应由“静态”向“动态”方向发展。“静态”指要求学生能够在理论层面上真正理解和掌握弹性力学及有限元方法;夯实基础知识,加大课程信息量;“动态”指要求学生能够在实践层面上利用计算机有限元模拟平台掌握分析实际工程问题的动态仿真过程,如:伺服压力机结构强度及整体刚度分析、折弯机床身变形模拟、板材冲压成形及回弹动态过程等;力争反映该领域较成熟的最新的实用成果,如:高精度方法(h-p adaptive)计算的误差控制及计算的可靠性及收敛性问题等。课堂上,结合弹性力学理论知识,在先进的有限元数值仿真平台上演示教学,并在工程实际实例中精选出具有典型教学代表意义和较大知识覆盖面的实例作为教学素材,设计出一些能够充分发挥学生创新能力的上机练习及考试试题。

  (3)利用网络教学手段,把课堂教学内容的PPT、课本练习题的参考答案,常见的经典工程结构三维有限元动态仿真模拟动画、视频文件等相关教学内容放在网络上,学生可网上查阅,以了解该课程的各方面情况,同时也可从网上反馈有关信息。

  (4)积极寻求校企联合、共同加入课程建设和教学的`模式,积极与企业工程师共同创作部分与企业项目实际类似的课程设计题目,提高课程设计的实践性,缩小课堂教学与企业实际间的距离。使专业知识与工程实例融入到弹性力学及有限元的理论教学之中,让枯燥的抽象理论知识与实际的工程实践知识结合起来,调动了研究生的学习积极性,激发研究生的研究兴趣和创新能力。

  (5)推进教学与科研相融合,高水平的教学与科研是有机结合、相互促进的,以教学促进科研,以科研充实教学,实现教学和科研的良性互动。在已有的包括国家自然科学基金、上海自然科学基金及上海教委创新基金在内的科研平台上,基础理论结合实际工程问题,来推进《弹性力学及有限元》课程教学改革纵深发展,以培养适应机械工程领域需求的具有创新精神,实践能力和创业精神的高素质研究生人才。