1系统架构设计
整个系统以广电大数据分析平台为基础构建,系统由数据采集系统、数据分析中心、三个数据应用中心(推荐中心、决策中心和服务中心)组成和系统管理模块组成。
1.1数据采集系统
大数据时代,大数据有着来源复杂、体量巨大、价值潜伏等特点,这使得大数据分析必然要依托计算机技术予以实现.因此从两个方向上加强数据采集统建设,一是侧重于数据的处理与表示,强调采集、存取、加工和可视化数据的方法;二是研究数据的统计规律,侧重于对微观数据本质特征的提取和模式发现,在两个方向上的协同、均衡推进,以此来保障大数据平台应用的稳健成长和可持续发展.广电的网络和用户是其核心资产,而其中流动的数据(包括用户基础数据、网络数据、网管/日志数据、用户位置数据、终端信息等)是核心数据资产.对于广电运营商来说,最有价值的数据来自基础网络,对于基础网络数据的挖掘和分析是运营商大数据挖掘的最重要方向.因此其数据采集的目标包括机顶盒数据、CRM数据、帐务数据、客服数据、运维数据、媒资数据、GIS数据、财务数据和其他手工录入、表格数据.采集频率要求可以实现实时采集和定时批量采集.采集这类数据带来一个问题就是各类数据杂乱无章,会导致数据质量问题越来越严重,通过引进实时质量监控和清洗技术,建设强大的分布式计算和集群能力,提高数据监控和数据采集性能,利用分布式处理技术,实现数据抽取、数据清洗以及相应的数据质量检查工作,保证采集到高质量的数据,将广电大数据中心建设成一个覆盖广电系统全部数据的存储中心,具备采集各类结构化、非结构化海量数据的处理能力.
1.2数据分析中心
广电企业每时每刻都在产生大量的数据,需要对这些数据归集、提炼,广电企业大数据平台建设的意义在于有效掌握规模庞大的数据信息,对这些数据信息进行智能处理,从中分析和挖掘出有价值的信息.在广电大数据分析中需要对直播节目分析、互动业务分析、互联网流量分析、互联网内容分析、广电客户分析、市场收益分析、智能内容推送和广告分析等,通过这类数据分析,能够实时了解广电运营商的经营状况,提供决策支持.因此采用两种方式分析方法对收集到的数据进行分析处理.一是采用在线分析方法技术,使分析人员能够迅速、一致、交互地从各个方面观察信息,以达到深入理解数据的目的.这些信息是从原始数据直接转换过来的,他们以用户容易理解的方式反映企业的真实情况.在线分析策略是将关系型的或普通的数据进行多维数据存贮,以便于进行分析,从而达到在线分析处理的目的.这种多维数据存储可以被看作一个超立方体,沿着各个维方向存贮数据,它允许分析人员沿事物的轴线方便地分析数据,分析形式一般有切片和切块以及下钻、挖掘等操作.二是数据挖掘是从海量、不完全的、有噪声的数据中挖据出隐含的、未知的、用户可能感兴趣的和对决策有潜在价值的知识和规则.这些规则蕴含了数据库中一组对象之间的特定关系,揭示出一些有用的信息,可以为经营决策、市场策划和金融预测等方面提供依据.
1.3数据应用中心
在大数据分析平台应用过程中,数据本身并不是数据分析和数据挖掘的重点,重点在于如何应用这些技术去解决企业在运营中实际的商业问题.通过对数据分析和挖掘,了解企业运行过程存在问题,预判企业中各类业务发展走向.对数据分析与挖掘结果来说主要有两个方面,一是将分析结果给客户使用,另一个是将分析结果提供给内部用户使用,因此在大数据分析平台设计中,将数据应用划分为三个应用中心:
1)推荐中心
推荐中心面向收视、宽带使用用户,通过分析使用用户的收视、互联网、消费等行为,将使用用户分群,总结群体特征,向不同群体推荐个性化的电视节目、广告和增值应用服务.从而提升用户的使用体验,提升用户的满意度和粘度.
2)决策中心
决策中心面向广电企业内部决策者、管理者、经营分析人员,通过对企业经营数据的KPI、运营监控、经营盘点,使企业决策者掌握企业运营状况及发展趋势;智能报告协助分析人员自动定位经营中的问题;即席查询在预定义的语义层基础上,实现灵活的自定义查询;通过主题分析满足各部门、岗位的多维度分析需求;通过专题分析就某一具体问题进行深入挖掘,辅助专业分析人员的工作;统计报表满足各部门常规统计需求.
3)服务中心
服务中心面向广电的合作伙伴,比如:电视台、广告商、服务和内容提供商、相关政府职能部门等.通过对使用用户收视行为的实时分析,将电视栏目实时收视率提供给电视台,电视台根据收视率进行在线的问卷调查,提高电视台的影响力,帮助其增强栏目的评价体系.为广告商提供精准的广告投放策略,实时准确的广告投放评估,帮助广告商提升广告到达率、准确度和营销效果.为服务和内容提供商的电影、电视和增值应用等产品提升收视率和使用频率,并进行评估,为其提供受众喜好特征,帮助其推出有针对性的产品.通过用户收视数据、节目反馈等信息,将相关舆情向相关政府部门汇报.
1.4系统管理
系统管理是大数据分析平台一个辅助功能模块,主要是为了系统管理员对大数据平台进行有效的监控和管理,提升大数据分析平台性能使用,包含有如下几个模块:权限管理、数据质量管理、元数据管理、调度管理、系统监控等.
2数据应用分析
移动互联网的发展为传统行业带来了新的思考,如何在互联网时代更好地实现以客户为中心的服务理念,借助大数据分析平台、海量的客户非结构化的行为数据和传统的结构化数据,可以有效提升广电个性化、人性化的服务水平.大数据分析平台通过整合广电网络中多个数据源,并按照主题进行划分,在定义主题的过程中,提供广电业务概念的规范定义.数据模型不偏重于面向某个应用,而是站在企业角度统揽全局,提供可扩展的模型设计,偏范式化的设计使平台在最大程度上保持一致和灵活扩展性.依托某广电网络公司业务开展情况,搭建数据分析平台,具有如图2所示的主题结构,共计8大类53小类,从广电网络运营的各个方面进行了数据分析.