关于数学周记
今天,我偶然地在一本书上见到了这样不可思议的数据:“一张厚度为0.01厘米的纸对折30次之后的厚度竟然比珠穆朗玛峰还要高呢?”
这个数据无论怎么听都觉得太“荒唐”了一点。毕竟是一张薄薄的纸,通过对折真能超过珠穆朗玛峰吗?但很多意想不到的事情都有可能发生,所以只有通过计算,这一切的谜底才能揭晓。
随即,我便把0.01厘米连续乘以2,一共30次,得到10737418.24厘米。接着,我又把珠穆朗玛峰的高度8848.13米转化为884813厘米,通过比较,很明显能够看出对折30次之后的纸张的厚度的确胜过了珠穆朗玛峰的高度,而且还是后者的10多倍。
其实,像这样的惊人的数据在平常的生活中处处存数学在,只要你有一双善于发现的眼睛。
在生活中,每一处都离不开数学,所以,我们要学好数学,掌握好数学和用好数学。同时,也因为数学是离不开生活的,所以我们也会在生活中常常遇到一些难解的数学题。
记得有一次,我们到叔叔家里玩。玩着玩着,叔叔拿了10个硬币走了过来,说:“你们想要这些硬币吗?”“当然想啦!”大家异口同声地回答道。我望着叔叔,真有点丈二和尚——摸不着头脑,我感觉到叔叔好像在耍什么把戏似的。“你们想要这些硬币,就要回答我的问题,谁答对,硬币就全归他了。”说完,叔叔就提出一个问题:“怎样才能把10个硬币放进3个杯子里,使每个杯子里的硬币数都是奇数,看谁能找出最多的方法。”
听完叔叔的题目,大家冥思苦想。只见表弟在客厅里走来走去,表姐坐在椅子上冷静地思考着。不一会,我看见妹妹找来了材料,试着做。可是,做了很久,妹妹还是没找到具体解题的方法。我也不甘示弱,开动脑筋想着。哎,要是能把这硬币拿到手,那该多好啊!
过了十多分钟,大家都没有想到怎么做,叔叔见此情景,对我们说:“给你们一点提示吧!解这道题要学会多转几个弯,不要……”“等等!”话没说完,表弟好象想到了什么似的。只见他拿起10个硬币,先把第1个硬币放到第1个杯子里去,然后把3个硬币投进第2个杯子里,看到这里,我不禁想道:这个办法嘛,我早就想过了,根本就不行,剩下的硬币有6个,6是偶数,我可以肯定地说一句:“这个办法是行不通的。”当表弟把剩下的6个硬币放到第3个杯子时,我插嘴道:“这办法根本……”我的话还没说完,表弟就把我的话打断了,“表姐,你还是看我的表演吧!”表弟神气地说。只见他拿起第1个杯子,把那个硬币放到第3个杯子里去。“这就是第一种方法。”表弟得意地扮了个鬼脸。“哎呀!我真笨,怎么想到第三步就放弃了呢?真不值得!”接着,表弟按照第一次那样做,先把3个硬币放到第1个杯子里,然后在第二个杯子里放5个硬币,接着把剩下的硬币放到第三个杯子里,最后,把第一个杯子里的硬币放到第三个杯里去。这样第二种方法就完成了。按着这样的方法,表弟连续做了13次。
看到这里,站在一旁的叔叔拍起了手掌,点点头说:“真想不到,你这小鬼还会有动脑筋的时候,这回你赢了,10个硬币都归你了。”叔叔一边称赞表弟,一边抚摸着他的小脑袋。“不过,小欣,你得加把劲了,这回连表弟都赢了你。记住,凡事多动脑筋,别轻易放弃。”
是呀,叔叔说得对,凡事多动脑筋,别轻易放弃。如果我刚才想到第三步没放弃的话,再动动脑筋,那道题就被我解开了。以后,真的要加把劲,努力学好数学,掌握好数学,用好数学。
今天中午,我正在做数学周末作业。写着写着,不幸遇到了一道很难的题,我想了半天也没想出个所以然,这道题是这样的:
五个裁判员给一名体操运动员评分,去掉一个最高分一个最低分,平均分是9·58分;去掉一个最低分平均分是9·66分;去掉一个最高分平均分是9·46分。这个运动员的最高分与最低分相差多少?
我见了,心想:这道题还真是难啊!最高分和最低分怎么求呢?
正当我急得抓耳挠腮之际,我爸爸打电话来了,我对他说了这到题,他说:“先求出去掉最高分总分是多少,减去最高分和最低分的总分。算式:9·46x4-9·58x3=9·1(分)。再求出去掉最低分的总分,减去最高分和最低分的总分。算式:9·66x4-9·58x3=9·9(分)最后用9·9-9·1=0·8(分)”听了爸爸的解法后,我还真觉得这道题变简单了,做出来后,我想:做题要讲技巧,不能死记硬背,要不然做任何题都会觉得难!正如斯蒂恩说的:“在数学定理的评价中,审美标准既重于逻辑的标准,也重于实用的标准:在对数学思想的评价时,美与优雅比是否严密、正确,比是否有用都重要得多。”
后来,我又用我5年级下册学过的知识——分解质因数验算了这道题,结果一模一样。
解出这道题后,我心里比谁都高兴。我还明白了一个道理:数学充满了奥秘,等待着我们去探求。
6月9日星期一晴转阴
下午放学时,班主任老师给我们布置了一道家庭作业,要求大家想办法测算一次性筷子的体积,并用数学日记的形式将测算过程记录下来。这道家庭作业,表面上是一次数学实践活动,实际可能寓意更深,因为一次性筷子的使用与环保有关。
一回到家,我就静静地坐在书桌前思考这个问题。一次性筷子的形状是一个不规则的立体图形,怎样才能测算出它的体积呢?我思来想去,一会儿抓耳挠腮,一会儿摇摇头……,终于,有了一点眉目。我可以将一次性筷子放入装满水的容器中,这样容器中的水就会溢出来,溢出水的多少不就是筷子的体积吗?可是筷子比水轻,会浮在水面上,又该怎么办呢?可不可以用石头或胶布之类的东西将筷子固定住呢?我想应该是可以的,但这些办法测定起来又都太麻烦了,要是有更简便的方法该多好啊!经过冥思苦想,我终于自豪的笑了。
6月10日星期二晴
今天中午,我去餐馆买了一份盒饭,并特意要了几双一次性筷子准备做实验。
一回到家,想到可以做实验了,心情真有点激动,但又夹杂着几丝恐慌,我可不想让第一个方案刚一出炉就遭到淘汰。为了验证实验方案是否正确,我专门测量了筷子的长度(20厘米)、厚度(0·35厘米)和两端的宽度(分别为1·6厘米、0·8厘米)。由于一次性筷子近似于梯形体,我便利用梯形体的体积计算公式来计算筷子的体积,由计算结果可知,一次性筷子体积大约为8。4立方厘米。如果实验测得的结果和我所计算的结果近似的话,那么就说明我的实验是成功的,否则,我就得另想办法。刚准备动手实验,一看实验用具还不够,所以只好等到明天了。