选矿是根据矿石中不同矿物的物理、化学性质,把矿石破碎磨细以后,采用重选法、浮选法、磁选法、电选法等,下面是我为大家带来的选矿专业技术论文,希望大家喜欢。
摘要:简述铁矿选矿厂尾矿浓缩及输送存在的问题,结合铁尾矿浆的特点,经过分析计算提出优化建议和优化后经济效益。
关键词:铁矿选矿厂;尾矿系统;节能降耗
0引言
某铁矿选矿厂有两个选矿车间,一选车间尾矿干矿量约占总尾矿干矿量的70%以上。一选车间排出的尾矿浆进入浓缩池浓缩,底流矿浆经渣浆泵加压输送至尾矿泵站吸浆槽,槽内矿浆经尾矿泵加压输送至尾矿库。尾矿泵为Ⅱ级串联运行,由于尾矿浆重量浓度偏低,导致尾矿泵输送量大,耗能显著。因此,设计拟对尾矿浆浓缩系统进行优化设计,达到尾矿浆浓缩和输送节能降耗的目的。
1工艺设计基础资料
1)一、二选车间年生产铁尾矿干矿量依次为790万t和210万t;
2)尾矿固体密度ρs=2800kg/m3;
3)一选车间尾矿浆采用5台Φ53m浓缩池,每台浓缩池配套两台(-工-备)150ZJ-A60型底流渣浆泵(配套8极电机,功率55kW,变频调速),底流矿浆重量浓度Cw=38%,渣浆泵所需扬程约20m;
4)二选车间尾矿浓缩池底流矿浆浓度Cw=45%;
5)尾矿泵站内设8台(两台串联为1组,两组工作,两组备用)250ZJ-Ⅱ-A96型渣浆泵(配套8极电机,功率900kW,Ⅱ级泵变频调速),矿浆重量浓度Cw=39%,渣浆泵所需总扬程约180m;
6)尾矿输送管道采用D630×10钢管。
2工艺设计参数核算
———尾矿浓缩系统设计参数核算。结合现场运行经验,渣浆泵转速低于590r/min会出现泵吸口处堵塞现象,导致渣浆泵吸口过流面积减小,电耗增大,而且渣浆泵流量受控,出现“流量最大化,不能再度提高”的现象。因此,按照渣浆泵转速等于590r/min选取性能参数。查阅150ZJ-A60型渣浆泵性能曲线:渣浆泵转速等于590r/min时,Q=400m3/h,H=20m,η=75%。单台渣浆泵配套电机实际运行功率P=38.5kW。———尾矿输送系统设计参数核算。查阅250ZJ-Ⅱ-A103型渣浆泵性能曲线:工频转速下,Q=1225m3/h,H=104.3m,η=72%。因此,Ⅱ级泵所需扬程为75.7m,对应的转速为630r/min,η=73.5%。经计算,尾矿输送水力坡降i=0.0065m矿浆柱/m。每组尾矿泵配套电机实际运行功率:Ⅰ级泵P=639.5kW,Ⅱ级泵P=454.5kW。
3优化设计方案
———尾矿浓缩系统优化设计方案。设计拟将5台Φ53m尾矿浓缩池底流矿浆重量浓度提高至45%,将底流渣浆泵泵头更换为150ZJ-A50。浓缩池底流矿浆浓度提高后,单台底流渣浆泵运行参数:Q=320m3/h,H=19.5m,n=700r/min,η=75.5%,配套电机实际运行功率P=31.5kW。———尾矿输送系统优化设计方案。设计拟将尾矿泵泵头更换为250ZJ-Ⅱ-A96型。浓缩池底流矿浆浓度提高后,进入尾矿泵站吸浆槽的矿浆量降至1995m3/h,综合浓度提高至45%(忽略轴封水对矿浆浓度的影响),经计算尾矿输送水力坡降i=0.005m矿浆柱/m。尾矿Ⅰ级泵运行参数:Q=1020m3/h,H=91m,n=730r/min,η=72%,配套电机实际运行功率P=494kW;Ⅱ级泵运行参数:Q=1020m3/h,H=65m,n=620r/min,η=75%,配套电机实际运行功率P=339kW。———现有尾矿输送管校核。现有尾矿输送管D630×10钢管在通过矿浆体积量1995m3/h时,运行流速v=1.90m/s,大于临界淤积流速,且有一定的安全余量,安全可靠。
4能耗分析
———尾矿浓缩系统能耗分析。优化设计后,尾矿浓缩池底流渣浆泵实际运行功率减少5×(38.5-31.5)=35kW,年节省电费(按0.64元/度计算)35×24×365×0.64≈20万元。———尾矿输送系统能耗分析。优化设计后,尾矿泵实际运行功率减少2×(639.5-494+454.5-339)=522kW,年节省电费(按0.64元/度计算)522×24×365×0.64≈293万元。———综合能耗计算。整个尾矿系统年节省电费20+293=313万元。
5结语
选矿厂尾矿浆高浓度管道输送是最为经济的输送方式。合理选择矿浆浓度可降低尾矿浓缩池底流矿浆泵和尾矿输送渣浆泵运行功率,可减小尾矿输送管道和回水管道口径及管道附件,同时可减小尾矿泵站设计规模。优化设计依据目前选矿厂尾矿浆输送经验,结合铁矿选矿厂特点,经过分析选择合适的矿浆输送浓度,达到了节能降耗的目的。
【摘要】
采用多种手段对拟建选矿厂场地的水文地质及工程地质方面进行调查;通过对场地的水文地质条件分析发现,场地的地下水位较高,渗流现象明显;工程地质条件分析表明,工程场地不均匀,但地基承载力较好。本文通过对场地水文地质条件和工程地质条件的研究并结合实际情况为后续建设的选矿厂基础设计和建设提供重要依据和建议。
【关键词】
水文地质;工程地质;基础设计
1工程概况
矿山区域位于青藏高原之东南缘、滇西北著名的横断山脉中段。拟建选矿厂场地海拔达3450~3550m;位于普朗河东岸缓坡地段,场地沿普朗河方向长约1。4km,垂直于普朗河方向宽50~200m,地形总体由东向西倾,场地内地形坡度较平缓,一般10~15°;植被覆盖较好,植被以高山松和高山砾石为主,局部分布高原草甸和灌木。本文通过测绘、物探、钻探、现场原位测试、现场岩土试验及室内试验等相结合的综合方法对拟建选矿厂场地的水文地质和工程地质进行调查和研究;在室内系统的整理、分析所取得的数据和资料,为拟建选矿厂的基础设计和建设提供建议。
2场地水文地质
水文地质分析的是地表水以及地下水的分布和形成规律等,它对建筑物及基础的稳定性和安全性有着极大的影响。(1)地表水。拟建场区处于金沙江源头流域,是金沙江水源的补给区,区内水系发育,周边发育的河流为普朗河。通过漂流法对普朗河的流量进行了测定,旱季流量为1。36m3/s,雨季流量为10m3/s。研究区场地内泉点出露较多,泉水流量随季节的影响变化较大,大多为季节性泉,旱季时大部分断流。(2)地下水。场地内地下水可划分松散岩类孔隙水和基岩裂隙水两种类型,根据场地地层结构,场地内浅部主要分布碎石类土,孔隙大、透水性强,场地地下水以松散岩类孔隙水为主。为取得场地地层的渗透性参数,所采用的水文地质试验有钻孔抽水试验和钻孔注水试验。抽、注水实验的原理是通过从某一含水层(抽水井或注水井)中抽取或注入一定流量的水,并观测抽水井和观测孔中水位与时间的变化关系,来判断水流运动状态,计算含水层的渗透系数。在室内对抽、注水试验的数据进行整理绘出的水位与时间的关系图,图1、图2分别为抽水孔XCK21的Q、S-t图,注水孔XCK6的Q-t图。通过对XCK21等5个孔进行抽水试验和对XCK6等6个进行注水试验,得出第四系松散岩类含水层渗透系数为5。81×10-5~6。03×10-3cm/s。(3)水文地质分析建议。通过钻孔资料和抽水试验发现场地的地下水位较高,第四系坡积地层相对松散,属于强透水性地层,第四系冰积层密实度相对较好,属于中等~强透水性地层。地下水总体受地形地貌控制在松散岩类孔隙向普朗河流动,如遇地形陡变或局部隔水层时会出露地表形成泉点。在场地平整和基坑开挖时会出现渗流且涌水量较大。所以建议在基础施工期间考虑采取临时性的明沟排水或盲沟排水措施,垂直地下水流向设置横向截水沟,并设置纵向截水沟相连接,使地下水通过导排设施排出场地。永久性排水设施应采取盲沟排水,盲沟应结合地下水易集中渗出部位布置,优先布置在边坡坡脚、挡墙墙脚部位,形成纵横交错的地下水导排系统,将地下水排出场区[3]。
3场地工程地质
(1)地层。根据现场地质测绘及勘探揭示,拟建场地地表被耕土所覆盖,其下由第四系坡积层及四系冰积层组成,基底为三叠系上统图姆沟组2段(T3t2)板岩。坡积层以碎石层为主,角砾和块石呈局部分布;冰积层以卵石和碎石为主,漂石、块石和圆砾、角砾层呈夹层状分布。(2)岩土层物理力学性质。经过室内岩土试验、现场原位测试及物探手段获取了场地主要土层的物理力学性质指标,得到的数据如下:通过对主要岩土层物理力学的研究可以得出:坡积层角砾在重型圆锥动力触探试验修正锤击数(N63。5)为4。0击,呈松散~稍密状态,其力学性质较差,地基承载力较低;坡积层碎石在重型圆锥动力触探试验修正锤击数(N63。5)为5。7击,呈松散~稍密状态,载荷试验承载力特征值为160kPa,现场直接剪切试验粘聚力C值为11。01kPa,内摩角φ为25。19°,其力学性质一般,地基承载力一般;坡积层块石呈稍密状态,其力学性质一般,地基承载力一般;冰积层圆砾呈稍密状态,其力学性质一般,地基承载力一般;冰积层卵石、冰积层漂石、冰积层碎石和冰积层块石力学强度较高。(3)工程地质分析建议。结合现场地质测绘及勘探资料和岩土的物理力学性质,得知场地内除浅表分布的植物层,其余各岩土层均可作为建筑物的基础持力层。但第四系冰积层内各地层交杂分布,成层性差,各地层间力学性质差异较大,易产生不均匀沉降,不可将这层地层作为地基持力层。在后续的基础建设中,如果建筑物荷重不大时,可采用第四系冰积地层或冰积地层、坡积地层共同作为天然地基浅基础持力层,基础形式可采用条形基础、独立基础或筏板基础等。当采用冰积地层和坡积地层共同作为同一建筑物的基础持力层时,应考虑二者力学强度差异较大,存在不均匀沉降问题,可采取对坡积地层进行地基处理或加强上部结构强度以消除不均匀沉降影响。对于荷重较大的建筑物以及动力机器基础,当采用地基处理方案不能满足建筑物荷重要求时,可采用桩基础[4],以第四系冰积碎石、块石或卵石、漂石层为桩端持力层。
4结语
(1)拟建选矿厂场地的地下水位较高,场地的渗透性较强,地下水受地形地貌的控制,总体上向普朗河方向流动。(2)拟建选矿厂场地在基础施工时要预防渗流发生,应修建排水措施,可采取明沟排水和盲沟排水相结合的方式;在修建排水工程措施的时候应考虑渗流易发的坡脚和挡墙墙脚。(3)拟建选矿场地岩土力学性质较好,在基础设计时应注意不同岩土间力学差异,避免出现不均匀沉降;对于荷重不大的可使用条形基础、独立基础或筏板基础等,如建筑荷载过大可考虑使用桩基础。
参考文献
[1]DL/T5213-2005,水利水电工程地质勘察规范[S].
[2]SL345-2007,水利水电工程地质勘察规范[S].
[3]徐玉龙。山谷型填埋场雨污分流系统设计[J].环境卫生工程,2010,18(6):45-46.
[4]张世民。深厚软土中刚柔复合桩基沉降计算及设计分析[D].杭州:浙江大学,2004.