高二数学余弦定理练习题

时间:2021-08-31

  1.数学余弦定理练习题高二1.在△ABC中,已知a=4,b=6,C=120,则边c的值是()

  A.8 B.217

  C.62 D.219

  解析:选D.根据余弦定理,c2=a2+b2-2abcos C=16+36-246cos 120=76,c=219.

  2.在△ABC中,已知a=2,b=3,C=120,则sin A的值为()

  A.5719 B.217

  C.338 D.-5719

  解析:选A.c2=a2+b2-2abcos C

  =22+32-223cos 120=19.

  c=19.

  由asin A=csin C得sin A=5719.

  3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为__________.

  解析:设底边边长为a,则由题意知等腰三角形的腰长为2a,故顶角的余弦值为4a2+4a2-a222a2a=78.

  答案:78

  4.在△ABC中,若B=60,2b=a+c,试判断△ABC的形状.

  解:法一:根据余弦定理得

  b2=a2+c2-2accos B.

  ∵B=60,2b=a+c,

  (a+c2)2=a2+c2-2accos 60,

  整理得(a-c)2=0,a=c.

  △ABC是正三角形.

  法二:根据正弦定理,

  2b=a+c可转化为2sin B=sin A+sin C.

  又∵B=60,A+C=120,

  C=120-A,

  2sin 60=sin A+sin(120-A),

  整理得sin(A+30)=1,

  A=60,C=60.

  △ABC是正三角形.

  课时训练

一、选择题

  1.在△ABC中,符合余弦定理的是()

  A.c2=a2+b2-2abcos C

  B.c2=a2-b2-2bccos A

  C.b2=a2-c2-2bccos A

  D.cos C=a2+b2+c22ab

  解析:选A.注意余弦定理形式,特别是正负号问题.

  2.(2011年合肥检测)在△ABC中,若a=10,b=24,c=26,则最大角的余弦值是()

  A.1213 B.513

  C.0 D.23

  解析:选C.∵ca,c所对的角C为最大角,由余弦定理得cos C=a2+b2-c22ab=0.

  3.已知△ABC的三边分别为2,3,4,则此三角形是()

  A.锐角三角形 B.钝角三角形

  C.直角三角形 D.不能确定

  解析:选B.∵42=1622+32=13,边长为4的边所对的角是钝角,△ABC是钝角三角形.

  4.在△ABC中,已知a2=b2+bc+c2,则角A为()

  A. B.6

  C.2 D.3或23

  解析:选C.由已知得b2+c2-a2=-bc,

  cos A=b2+c2-a22bc=-12,

  又∵0

  5.在△ABC中,下列关系式

  ①asin B=bsin A

  ②a=bcos C+ccos B

  ③a2+b2-c2=2abcos C

  ④b=csin A+asin C

  一定成立的有()

  A.1个 B.2个

  C.3个 D.4个

  解析:选C.由正、余弦定理知①③一定成立.对于②由正弦定理知sin A=sin Bcos C+sin Ccos B=sin(B+C),显然成立.对于④由正弦定理sin B=sin Csin A+sin Asin C=2sin Asin C,则不一定成立.

  6.在△ABC中,已知b2=ac且c=2a,则cos B等于()

  A.14 B.34

  C.24 D.23

  解析:选B.∵b2=ac,c=2a,

  b2=2a2,

  cos B=a2+c2-b22ac=a2+4a2-2a22a2a

  =34.