【热门】数学说课稿合集6篇
作为一无名无私奉献的教育工作者,编写说课稿是必不可少的,借助说课稿可以让教学工作更科学化。那么写说课稿需要注意哪些问题呢?以下是小编整理的数学说课稿6篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
各位
我说课的课题是《任意角的三角函数》,内容取自人教版普通高中课程标准实验教科书《数学》④(必修)第1、2、1节。
一、教材结构与内容简析
本节内容在全书及章节的地位:三角函数是描述周期运动现象的重要的数学模型,有非常广泛的应用。三角函数的定义是在初中对锐角三角函数的定义以及刚学过的“角的概念的推广”的基础上讨论和研究的。三角函数的定义是本章最基本的概念,对三角内容的整体学习至关重要,是其他所有知识的出发点。紧紧扣住三角函数定义这个宝贵的源泉,可以自然地导出本章的具体内容:三角函数线、定义域、符号判断、值域、同角三角函数关系、多组诱导公式、多组变换公式、图象和性质。三角函数的定义在教材中起着承前启后的作用,一方面,通过这部分内容的学习,可以帮助学生更加深入理解函数这一基本概念,另一方面它又为平面向量、解析几何等内容的学习作必要的准备。三角函数知识还是物理学、高等数学、测量学、天文学的重要基础。
三角函数定义必然是学好全章内容的关键,如果学生掌握不好,将直接影响到后续内容的学习,由三角函数定义的基础性和应用的广泛性决定了本节教材的重点就是定义本身。
数学
二、教学重点、难点、关键
教学重点:任意角的三角函数的定义,三角函数的符号规律。
教学难点:任意角的三角函数概念的建构过程。
教学关键:如何想到建立直角坐标系;六个比值的确定性(α确定,比值也随之确定)与依赖性(比值随着α的变化而变化)。
三、学情分析
学生已经掌握的内容及学生学习能力
1、学生在初中时已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。
2、学生的运算能力较差。
3、部分同学对数学的学习有相当的兴趣和积极性。
4、在探究问题的能力,合作交流的意识等方面发展不够均衡,必须在老师一定的指导下才能进行。
四、教学目标
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,我制定如下教学目标:
1、基础知识目标:使学生正确理解任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义;
2、能力训练目标:通过学生积极参与知识的“发现”与“形成”的过程,培养合情猜测的能力。
3、情感目标:通过学习,渗透数形结合和类比的数学
下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:
五、教学理念和方法
教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、合作交流、师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。
根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用“启发探索、讲练结合”的方法组织教学教法,在课堂结构上,设计了①创设情境——揭示课题②推广认知——形成概念③巩固新知——探求规律④
六、教学程序及设想
总体来说,由旧及新,由易及难,逐步加强,逐步推进,给定定义后通过应用定义又逐步发现新知识,拓展、完善定义、
先由初中的直角三角形中锐角三角函数的定义,过度到直角坐标系中锐角三角函数的定义,再发展到直角坐标系中任意角三角函数的定义。
(一)创设情境——揭示课题
问题1:在初中我们学习了锐角三角函数,那么锐角三角函数是如何定义的?
问题2:角的概念推广之后,这样的三角函数定义还适用吗?
问题3:若将锐角放入直角坐标系中,你能用角的终边上的点的坐标来表示锐角三角函数吗?
留时间让学生独立思考或自由讨论,教师参与讨论或巡回对学困生作启发引导。
能表示吗?怎样表示?针对刚才的问题点名让学生回答。用角的对边、邻边、斜边比值的说法显然是受到阻碍了,由于前面已经以直角坐标系为工具来研究任意角了,学生一般会想到(否则教师进行提示)继续用直角坐标系来研究任意角的三角函数。
从学生现有知识水平和认知能力出发,创设问题情景,让学生产生认知冲突,进行必要的启发,将学生思维引上自主探索、合作交流的“再创造”征程。
教师对学生回答情况进行点评后布置任务情景:请同学们用直角坐标系重新研究锐角三角函数定义!
师生共做(学生口述,教师板书图形和比值)。
问题4:对于确定的角,这三个比值是否与P在
的终边上的位置有关?为什么?
先让学生想象思考,作出主观判断,再引导学生观察右图,
联系相似三角形知识,探索发现:对于锐角α的每一个确定值,
六个比值都是确定的,不会随P在终边上的移动而变化。
得出结论(强调):当α为锐角时,六个比值随α的变化而变化;但对于锐角α的每一个确定值,六个比值都是确定的,不会随P在终边上的移动而变化、所以,六个比值分别是以角α为自变量、以比值为函数值的函数。
(二)推广认知——形成概念
将锐角的比值情形推广到任意角α后,水到渠成,师生共同进行探索和推广出:任意角的三角函数定义。同时教师强调:由于弧度制使角和实数建立了一一对应关系,所以三角函数是以实数为自变量的函数,对数学学习能力较好的同学起到了很好的指导作用。
教师指出:sinα、cosα、tanα的定义域必须紧扣三角函数定义在理解的基础上记熟,cotα、cscα、secα的定义域不要求记忆。
(关于值域,到后面再学习)。
(三)巩固新知——探求规律
为了使学生达到对知识的深化理解,进而达到巩固提高的效果,
例1、已知角的终边过点,求的六个三角函数值
要求:读完题目,思考:计算什么?需要准备什么?闭目心算,对照板书,模仿书面表达格式。
巩固定义之后,我特地设计了一组即时训练题,以巩固和加深对三角函数概念的理解,通过课堂积极主动的练习活动,培养学生分析解决问题的能力。
例2、求的正弦、余弦和正切值。
分析:终边上有无穷多个点,根据三角函数的定义,只要知道终边上任意一个点的坐标,就可以计算这个角的三角函数值(或判断其无意义)
师生探索:紧扣三角函数定义求解,首先要在终边上取定一点。终边在哪儿呢?取定哪一点呢?任意点、还是特殊点?要灵活,只要能够算出三角函数值,都可以。
取特殊点能使计算更简明。
等待学生基本理解和掌握三角函数定义后,观察、分析初、高中所计算的函数值有何变化,让学生意识到三角函数值的正负与角所在象限有关,然后引导学生紧紧抓住三角函数定义来分析,从而导出三角函数值的正负与角所在象限的关系,进而由教师
(四)
由学生
(五)任务后延——自主探究
学生经过以上四个环节的学习,已经初步掌握了任意角的三角函数的定义及三角函数的符号规律,有待进一步提高认知水平,因此我针对学生素质的差异设计了有层次的作业,其中思考题的设计
七、简述板书设计。
cotα、cscα、secα的定义写在sinα、cosα、tanα的左下方,突出本节重要内容的主体地位。
结束:以上,我仅从说教材,说学情,说教法,说学法,说教学程序上说明了“教什么”和“怎么教”,阐明了“为什么这样教”。