教学目标
(1)掌握两个数的最大公约数的质因数特征,能正确地求两个数的最大公约数。
(2)能较快地说出倍数关系与互质关系的两个数的最大公约数。
教学重点、难点
重点:用短除法求两个数的最大公约数
难点:判断互质数
教具、学具准备
教学过程
一、复习准备
1、口答:下列各数中,哪些数是约数2?哪些数是约数3?哪些有约数5?
10、12、9、20、18457235
2、下列各数中,哪些是互质数?
4和67和81和105和119和63和12
学生回答后提问:谁能说一说什么叫互质数?
3、提问:什么叫公约数?最大公约数?
练习:
36的公约数有:
60的公约数有:
36和60的公约数有:
(1)学生全体笔练
(2)反馈:师生共同作简要评价。
4、谈话引入:上节课,我们学会了用找出每个数的约数的方法来求两个数的最大公约数,那么,除此外,还有没有更简洁的方法来求两个数的最大公约数呢?这就是本节课我们要学生的内容。(揭示课题)
二、教学新识
1、教学用短除法求最大公约数
(1)探求特征:将36、60分解质因数。
36=2×2×3×3
60=2×2×3×5
↓↓↓
12=2×2×3
分解以后观察:
12的质因数与36、60的质因数有什么联系?说明什么?(学生回答后教师36和60的公有质因数用方框框住,并用↓与12的质因数建立对应关系?如上图)
谁能把你的发现用自己的话说出来。
结论:求两个数的最大公约数,可以先把这两个数分解质因数,然后把的它们全部公有质因数乘起来,就是最大公约数。