人教版六年级下册数学教案

时间:2021-08-31

人教版六年级下册数学教案合集八篇

  作为一名无私奉献的老师,有必要进行细致的教案准备工作,借助教案可以有效提升自己的教学能力。写教案需要注意哪些格式呢?下面是小编为大家收集的人教版六年级下册数学教案8篇,欢迎大家借鉴与参考,希望对大家有所帮助。

人教版六年级下册数学教案 篇1

  教学内容:

  比较正数和负数的大小。

教学目的:

  1、借助数轴初步学会比较正数、0和负数之间的大小。

  2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

教学重、难点:

  负数与负数的比较。

教学过程:

  一、复习:

  1、读数,指出哪些是正数,哪些是负数?

  -8 5.6 +0.9 - + 0 -82

  2、如果+20%表示增加20%,那么-6%表示 。

  二、新授:

  (一)教学例3:

  1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

  2、出示例3:

  (1)提问你能在一条直线上表示他们运动后的情况吗?

  (2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

  (3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

  (4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

  (5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

  (6)引导学生观察:

  A、从0起往右依次是?从0起往左依次是?你发现什么规律?

  B、在数轴上除了可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?

  (7)练习:做一做的第1、2题。

  (二)教学例4:

  1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

  2、学生交流比较的方法。

  3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

  4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

  5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

  6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。

  7、练习:做一做第3题。

  三、巩固练习

  1、练习一第4、5题。

  2、练习一第6题。

  3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 摄氏度。

  四、全课总结

  (1)在数轴上,从左到右的顺序就是数从小到大的顺序。

  (2)负数比0小,正数比0大,负数比正数小。

  第二课教学反思:

  许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。

  例3——两个不同层面的拓展:

  1、在数轴上表示数要求的拓展。

  数轴除了可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。

  同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

  2、渗透负数加减法

  教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

  例4——薄书读厚、厚书读薄。

  薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)

  例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘了三种不同类型,一一请学生介绍比较方法,将薄书读厚。

  将厚书读薄——无论哪种类型,比较方法万变不离其宗。

  无论哪种比较方法,最终都可回归到“数轴上左边的数比右边的数小。”即使有学生在比较—8和—6大小时是用“8>6,所以—8。

人教版六年级下册数学教案 篇2

  教学内容:

  例5体现了找规律对解决问题的重要性。这里的规律的一般化表述是:以平面上几个点为端点,可以连多少条线段。这种以几何形态显现的问题,便于学生动手操作,通过画图,由简到繁,发现规律。解决这类问题的常用策略是,由最简单的情况入手,找出规律,以简驭繁。这也是数学问题解决比较常用的策略之一。

  例6以选送节目为题材,讨论怎样分两步找出组合数,再求选送方案的总数。这里渗透了作为排列组合基础之一的乘法原理。

  例7是一个比较复杂的逻辑推理问题,借助列表,则比较容易逐步缩小范围,找到答案。这里渗透了逻辑推理的常用方法排除法。

教学目标:

  1.通过学生观察、探索,使学生掌握数线段的方法。

  2.渗透化难为易的数学思想方法,能运用一定规律解决较复杂的数学问题。

  3.培养学生归纳推理探索规律的能力。

重点难点:

  引导学生发现规律,找到数线段的方法

  教具学具:

  多媒体课件

教学指导:

  1.出示例5前,可以先让学生说说几年来每一学期的数学广角学了些什么。 探索例5时,应当先让学生理解问题。可以通过读题、说题意,使学生明白每两点之间都能连一条线段。然后让学生自己动手在纸上画画、试试,再来讨论有没有什么好方法

  2.探究例6时,可以直接给出题目,由学生自己尝试,也可以将例题分解,让学生先回答

  3.探究例7时,必须先让学生仔细读题,理解题意。

教学过程:

  一、复习回顾,游戏设疑,激趣导入。

  1.师:同学们,课前我们来做一个游戏吧,请你们拿出纸和笔在纸上任意点上8个点,并将它们每两点连成一条线,再数一数,看看连成了多少条线段。(课件出现下图,之后学生操作)

  2.师:同学们,有结果了吗?(学生表示:太乱了,都数昏了)大家别着急,今天,我们就一起来用数学的思考方法去研究这个问题。(板书课题)

  新知学习

  二、逐层探究,发现规律。

  1.从简到繁,动态演示,经历连线过程。