这一周的教学进度异常缓慢,我的教与学生的学都十分艰难,这一章是《相交线和平行线》,学生平生第一次遇到几何推理,而且要用数学符号语言表达出逻辑推理的过程,其难度是可以想象的,但是经过这一周的攻坚战,学生的畏难情绪正在渐渐消失,他们从迷茫中慢慢理顺着思路,我看到课堂上一双双眼睛渐渐明亮起来,学生们从几何学习的“悟”中品味到了一点点数学的简洁美、逻辑推理成功的愉悦感;经历了从认识到害怕、到再认识、到小的成功的过程,学生对几何学习的积极性明显增强,作业质量日渐提高。这一良性变化证明了教学中几点收获:
1、适时多给学生唱赞歌,激励学生的求知欲;学生学得轻松一些。
2、在几何入门教学中,可递进式的逐步提高逻辑推理的严密性;为学生留下思维的缓冲地带,不可一步到位。
3、精心备好几何入门课的同时,并根据学生的学情及时调整优化;使之最贴近学生;练习题作业题的设计上要多下功夫,体现从单一到运用再到综合的循环上升。
4、多对学生的错题进行辨析,多对学情分析反馈;
5、强化困难学生个别辅导,让他们一题一得,落到实处;分层作业,共同提升;
在课堂中,让学生回顾角的知识,让学生从角的顶点和两边入手去寻找对顶角的特征,让学生有明确的方向向教学目标靠拢。在寻找对顶角的练习中明确指出两条相交线就可以组成两组对顶角,这为最后的合作探究奠定了基础。在探究对顶角的性质的'时候,引导学生从已学的知识推倒对顶角相等,这符合学生的思维学习过程。在讲解例2的过程中,让学生思考并让学生分析解题的思路,并将学生的解题思路和正确答案进行结合并板演,这为习题的解题过程书写提供了格式。在合作探究时,先告知学生在寻找对顶角组数时应先明确两条相交线就可以组成两组对顶角,这与前面前后呼应,最终总结出寻找对顶角的方法。
最后学生总结这节课的收获,使学生回顾一节课的重点和难点,起到强调巩固作用。
在学习不等式这一章的时候,发现全班的大部分同学都能参入进来。可能是因为这一章刚开始学习内容相对来说简单一些吧。从这里我们也看出来了。很多学生不是不想学习,而是因为以前的基础相对差一些,碰到问题时他们无从下手,不知该怎么去做。久而久之不会的东西越来越多,最后自己也没办法了也只能放弃了。
针对这个特点,我们要给他们找一些简单的题目,让他们多增加一些自信心。慢慢的他们自信有了,那么他们的成绩也会提高一些。再就是发现这部分学生,上课的时候他们不能够集中注意力去听讲,自己不能控制住自己。我们可以通过正面引导,反复提问,检查落实,勤于督促,利用激励式评价“你能行”,“你会进步的”抓好他们学习习惯的养成,促进后进生不良习惯的转变。使他们保持积极进取、奋发向上的精神状态。
本课的主要教学任务是“同底数幂乘法的运算性质”:同底数幂相乘,底数不变,指数相加。
在课堂教学时,通过幂的意义引导学生得出这一性质,这一过程比较顺利,效果满意。学生在完成教材中的例题时,正确率较高。为了加深对这一性质的理解,也将同底数幂乘法、乘方运算以及整式加减集中运算进行辨析,学生基本上也能辨认清楚。至此,学生对于本节课的基本知识点已经掌握。在此基础上,我开始引导学生深入探讨同底数幂运算,幂的底数可以是“任意有理数、单项式、多项式”,训练学生的整体思想,学生掌握情况良好。接着对于同底数幂乘法法则的逆运用进行探索,并应用到实际问题中:课堂教学环节,实施流畅,效果满意,但是在探索将不同底的幂转化成同底数幂进行计算时,感觉学生理解困难。
课后我分析造成这一结果的根源,觉得主要是因为:“课堂内容安排过多,学生练习不足,精力有限”
这节课的主要任务就是一个运算性质,然学生理解很容易,但是要让学生能正确的进行计算以及解决实际问题,就会有很多问题。为了避免问题的发生,我在备课时就挖掘了很多教材上没有提及但是补充习题当中备受关注的题型。如最后的“探索将不同底的幂转化成同底数幂进行计算”。可是却事与愿违,由于大容量的课堂,造成教师讲解的过多,而学生自己练习的时间不足,面对运算性质,教师提点固然重要,但唯有自己多练,积累经验,才能提高运算能力。
在以后的教学中,首先在制定一节课的教学目标时,要根据学生的实际情况,先完成教材的基本要求,对于进一步挖掘教材而延伸的知识点则要注意难度。其次在课堂教学中,立足基本目标,精讲多练,在学生熟练掌握后,再组织学生探索一些特殊题型和解题技巧。总之,一节课40分钟,不能求全、求难,而是要关注所有学生对基本知识的掌握情况,这样的教学才扎实,学生学得才牢靠。
在解决问题的过程中,通过思考、分析、发现、再思考,再分析进而总结,就会获得新的知识。创设学生已有的知识经验基础上的情境,激发学生学习的积极性,学生通过在直角坐标下坐标的平移与点的坐标变化规律的探索,亲身经历了知识的形成过程,不但改变了学生死记硬背的学习方式,而且培养了学生自主探究、合作交流等良好的学习习惯。
整个教学过程中,无论是从情境中引入,还是对新知的探究及拓广,始终体现了学生是数学学习的主人。建构主人教学理论认为:学习总是与一定的问题情境相联系的。本课从新知的引入到新知的拓广都是以问题的形式呈现给学生,这样不但能激发学生的学习积极性,而且也为学生主动建构新知提供了保证。本课通过对平面直角坐标系下图形的平移与坐标变化的规律探索,使学生更深入体会到平面坐标系的作用,也体现了数学活动充满创造与探索的魅力。
【七年级数学下册教学反思】相关文章: