数学说课稿

时间:2021-08-31

【精选】数学说课稿集合5篇

  作为一名为他人授业解惑的教育工作者,总归要编写说课稿,说课稿可以帮助我们提高教学效果。我们该怎么去写说课稿呢?下面是小编为大家整理的数学说课稿5篇,希望能够帮助到大家。

数学说课稿 篇1

  一、教材分析

  平行四边形判定是初二教材的第二十章内容。这部分内容既是对前面所学的全等三角形和平行四边形性质的一个回顾和延伸,又是本章后续学习特殊平行四边形的基础,同时它还进一步培养学生简单的推理能力和图形迁移能力,今天我说课的内容是平行四边形判定的第一课时,主要探究与边有关的三种判定方法。

二、学情分析

  初二下半学期,学生已经学习了初中阶段包括全等三角形的性质判定在内的绝大多数几何概念及定理。抽象思维能力、逻辑推理能力已经逐步形成,学生对新鲜的知识也充满了好奇心和强烈的求知欲望,而平行四边形的判定条件中,又有许多颇有思考价值的问题。因此由教师组织教学,让学生全开放自主探索平行四边行的判定定理,让学生的综合能力得到一次检验和再提升。

三、教学目标

  掌握平行四边形的判定定理的证明、应用,培养学生的逻辑思维能力和推理论证能力。

四、教学重点难点

  探究平行四边形的判定定理的过程需要经过对逆命题的猜想、图形验证、逻辑证明三个过程,需要让学生体验并逐步掌握这种发现数学结论的方法,因此判定定理的探究过程是本节课的重点。

  学习完平行四边形的判定后,根据题目给出的条件,如何灵活准确的选择性质定理和判定定理,是本节的难点。

五、教学过程

(一)复习旧知,引入新课:

  1、写出平行四边形的定义和性质。

  2、写出以上性质的逆命题。、

  以上逆命题是否正确呢?你会用什么方法来说明它的正确性呢?这就是今天我们要探究的问题:引入新课,教师板书课题。

(二)提出议题,引发思考:

  发挥学生的主观能动性,让学生在动手、动脑中积极参与知识发生、发展的过程。

  1、判定方法一:平行四边形的定义

  2、判定方法二的探究过程:教师起主导作用,给出提示小组完成并交流。

  图形验证:作一个两组对边分别相等的四边形,看是否都是平行四边形。

  逻辑证明:利用全等和平行线的判定证明。对学生来说不是难题。

  归纳结论:让学生语言归纳,作为判定方法二。

  3、类比以上探究的过程,让学生完成“一组对边平行且相等的四边形是平行四边形”的探究过程。

  教师巡视,对发现问题及时纠正。

总结:图形验证过程会出现多种方法作图:先画两条平行线再分别截取相等线段;或者利用格点图作。

数学说课稿 篇2

  一、教材分析

  1.地位和作用

  “分式的意义”是九年制义务教育课本中七年级第二学期第十五章的第一节内容,是中学知识体系的重要组成部分。分式的概念与整式是紧密相联的,是前面知识的延伸,同时也是对前面知识的进一步运用和巩固。学生掌握了分式的意义后,为进一步学习分式、函数、方程等知识作好铺垫;有助于培养学生的分析、归纳、概括的能力。

  2.学情分析

  我任教班级学生基础不是很扎实,学习能力不够高.通过分数的学习,学生可能会用分数的定义去理解分式.但是在分式中,它的分母不是具体的数,而是含有字母的整式。为了让学生能切实掌握所学知识,提高学生的能力,在教学中对于教材中的例题和练习题,作了适当的延伸拓展和变式处理。

  3.教学目标 (1) 知识目标:理解分式的概念,并能判断一个有理式是不是分式。

  (2) 技能目标:掌握“如果分式的分母的值为零,则分式没有意义”;“如果分式的分子为零,而分母不为零时,分式的值为零”,会推断分式的分母中所含字母的取值范围。

  (3) 能力目标:初步掌握整式和分式的思想方法,培养学生分析、归纳、概括的能力。

  (4) 情感目标:通过学习分式的意义,培养学生的逆向思维能力和学生的辩证唯物主义观点。

  4.教学重点与难点

  本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点

  (1)重点:分式的意义:分式与除法的关系;

  (2)难点:掌握“如果分式的分母的值为零,则分式没有意义”;“如果分式的分子为零,而分母不为零时,分式的值为零”。

二、教学方法与学法本节课教师将以引路的形式,运用启发式的教学方法,带着学生去发现和探究新知识,教师在实施教学的过程中注意学生的观察能力和语言表达能力的培养,分析、归纳、概括,通过不断的实践和认识,让学生全面地掌握分式的意义,让学生体会到数学不是一门枯燥的学科,对学习数学充满信心。

  三、教学过程

  本节课的教学我主要分下面这样几个环节

  1.设问激疑,以旧探新,类比联想,形成概念

  教师先问学生两个问题,帮助学生回忆分数。

  思考:请各位同学将下列各题用一个恰当的`分数来表示:

  1. 一段绳子长3米,把它平均分成4份,则每份长是多少?

  2. 甲地到乙地的路程是180千米,一辆汽车行驶7小时,从甲地到达乙地,这辆汽车平均每小时的速度是多少?

  然后教师再请学生看以下两个问题。

  思考:1.一段绳子长3米,把它平均分成份,则每份长是多少?

  2.甲地到乙地的路程是180千米,一辆汽车行驶.

  小时,从甲地到乙地,这辆汽车平均每小时的速度是多少?

  学生通过运算、比较;可以发现.

  是一种新的代数式。教师介绍这种新的代数式,我们称它为“分式”,从而引出课题“分式的意义”。

  接着,教师在此基础上引导学生类比联想,给出分式的概念。即两个数相除可以用“”或“”来表示,如果两个代数式A,B相除我们也可以用“A÷B” 或“”来表示。

  分式的概念:两个整式A,B相除时,可以表示为的形式,如果分母B中含有字母,那么叫做分式。如:分母中都含有字母,都是分式。

  (这样的安排可以刺激学生复习和回忆前面所学的知识,选择能作为新知识的生长点的旧知识,将新知识的各因素联系起来,并以组织好的方式呈现给学生,使学生看到了知识的发展过程的同时,也学到了新的知识。通过比较概括,是新旧知识相联系,通过启发,激活学生头脑中的旧知识,调动学生主动学习的心理倾向。使他们对分式的概念先有一个粗略的总体认识,为下一步的教学作好铺垫,使学生对反映新知识内容的文字、符号先有一个表层的认识。)