一、说教材。
我说课内容是人教版课程标准实验教科书六年级上册分数除法单元中例1和例2。例1是分数除法意义认识,例2是分数除以整数计算。在这之前学生已经掌握了整数除法意义和分数乘法意义及计算,而本课学习将为统一分数除法计算法则打下基础。
例1先是整数除法回顾,再由100克=1/10千克,从而引出分数除法算式,通过类比使学生认识到分数除法意义与整数除法意义相同,都是已知两个因数积和其中一个因数,求另一个因数运算。例2是分数除以整数计算教学,意在通过让学生进行折纸实验、验证,引导学生将图和式进行对照分析,从而发现算法,感悟算理,同时也初步感受数形结合思想方法。
根据刚才对教材理解,本节课教学目标是:
1、理解分数除法意义与整数除法意义相同。
2、理解分数除以整数计算原理,掌握计算方法,并能正确进行计算。
3、经历观察、猜测、实验、验证和归纳过程,感受数形结合思想方法,并从中发展抽象思维能力。
本课重点是理解分数除法意义和分数除以整数计算方法;
本课难点是分数除法一般算法理解。这是因为要将除以一个数转化为乘以它倒数,在运算形式上由除法转化为乘法,变化较大,而学生往往由于思维定势,一时不容易接受。所以本课关键是如何引导学生在实验和验证中自主体验和感悟。
二、说教法、学法。
为了达成教学目标,本课教学必须贯彻以学生为主体,坚持启发与发现法相结合教学方法,引导学生大胆猜想,动手实践,在体验中、在交流中发现规律。
学习方法上强调以探究学习法为主。认知结构理论告诉我们,学习是学生积极主动内化过程。只有通过主动参与获得知识,才是有意义。因此,在重难点学习上,通过折纸实验与验证,数形结合,从而实现真正理解。
三、说教学过程。
(一)类比迁移,理解分数除法意义。
1、乘法意义对照。
(出示3盒标注100克水果糖)问:共重多少千克?
这个问题提法比教材中略有不同。教材中是先提问:共重多少克?借此引出整数乘法、整数除法算式,然后通过100克=1/10千克引出相应分数乘除法。根据我以往教学经验,这样处理不少学生在类比迁移时有一定障碍,并不容易实现。
而在问题中直接以千克为单位,首先因为问题更有挑战性而能更有效激发学生兴趣,其次还能引出三种形式算式:
○1整数形式:1003=300(克)=0、3(千克)
○2小数形式:100克=0、1千克 ;0、13=0、3(千克)
○3分数形式: 100克=1/10千克 ;1/103=3/10(千克)
这样处理不仅有利于学生系统建构整个乘法意义,而且,还能促使学生自然而然把分数除法意义与整数除法、小数除法意义统一起来。这样一来,接下去理解就显得水到渠成啦。
2、除法意义对照。
在改编成求每盒重多少千克问题情境下,引出相应三个除法算式:
○13003=100(克)=0、1(千克)
○20、33=0、1(千克)
○33/103=1/10(千克)
并进一步引导学生进行比较,从而理解分数除法意义与整数、小数除法意义相同。
3、练习:
1217= 204 2、81、5= 4、2 2/34=8/3
20412=( ) 4、21、5=( ) 8/34=( )
20417=( ) 4、22、8=( ) 8/32/3=( )
在前两步理解意义基础上,及时安排相应巩固练习。分别是已知三种形式乘法算式,不计算直接写出相应除法算式商。如:2/34=8/3,8/34=( ),8/32/3=( )
(二)自主探究,掌握算法。
第一步:教学4/52
1、创设问题情境:没有已知乘法算式,你还会计算4/52这道分数除法吗?
○1鼓励尝试计算;
○2组织全班交流;
(预设学生反馈):
方法A.因为22/5=4/5,所以4/52=2/5
这是受刚才所学除法意义影响,迁移而来;
方法B.4/52= 42/5=2/5
大部分是看到4与2倍数关系,想当然在计算;可能小部分能从数组成进行解释。
方法C.4/52=4/51/2=2/5
课前预习过;但能说清为什么恐怕很少。
2、引导理解方法B和C。
○1师:4/5里面有()个()/(),2表示平均分成两份,每份有()个()/();
○2师:在长方形里折一折,涂一涂,再来解释两种方法。
○3师:还有不同分法吗?
在先请学生进行解释基础上,引导思考: 4/5里面有()个()/(),2表示平均分成两份,每份有()个()/();在部分学生有所感悟基础上,引导学生进一步验证,根据课前提供五等分长方形纸片,要求学生折一折、涂一涂,再来进行解释。
由于已经将长方形纵向五等分,因此从直观上很容易理解方法B、再进一步启发:还有不同折法吗?鼓励学生寻求不同方法,比如说横向折,沿对角线折等等;
通过这些折法体验,使学生深刻认识到,不管怎么折,只要平均分成两份,每份始终是它12,也就是说始终可以将2转化为乘以1/2。
第二步:教学4/53
1、初步比较:你觉得哪种方法好?
2、尝试计算4/53;
(要求先折一折,涂一涂,再计算) (课前提供五等分长方形纸片)
反馈,追问:
○1 平均分成3份,每份是( )1/3? 求一个数几分之几怎么计算?
○2为什么不选A或B这两种方法?从中说明方法C比A和B相比有什么优点?
首先请学生对两种方法进行初步比较:你觉得哪种方法好?这时并不急于统一思想,转而请学生计算4/53。也要求根据课前提供五等分长方形纸片先折一折,涂一涂,再计算。
然后进行反馈,并引导思考:
○1 平均分成3份,每份是4/5(1)/(3)? 求一个数几分之几怎么计算?
○2为什么不选A或B这两种方法?从中说明方法C比A和B相比有什么优点?
此时通过对比和思考,应该说对方法C已经有了较为深刻认识。
建构主义理论认为:学习不是学生被动接受老师授予知识,也不是知识简单积累,它是学习者认知结构组织和重组,是学生主动建构知识意义过程。一开始初步比较哪种方法好,学生此时并没有什么感觉;而体验4/53求解过程,使学生自觉在心里进行了比较,也就是主动开始建构认识,这时理解是较为深刻理解。
第三步:实验与验证
1、师:其它这样分数除法计算是不是也和刚才两题一样呢?
在理解例题基础上,抛出一个疑问:其它这样分数除以整数计算是不是也能将除数转化为乘以它倒数呢?从学生思维历程看,这真是一波刚平,一波又起。促使学生积极思考,并产生要进行实验和验证动机。然后根据课前提供空白长方形纸条组织学生开展研究,并组织开展同伴间交流。
现代认知理论认为:感知只有经过一般化检验,才能上升成为知识。开展实验与验证符合从特殊到一般需要,而且还是学生主动、内在需要,这无论是对理解掌握算法、还是对培养良好数学思维习惯,都有积极意义。
2、反馈交流。
归纳:(一般化计算方法)用符号表示: AB=A1/B
观察:(形式上看)什么变了,什么没变?
最后,组织进行反馈,得出最后结论,并引导学生将一般化计算方法用符号化表示。这里不仅是为了培养学生符号意识,包括之后引导学生观察,(形式上看)什么变了,什么没变?其目在于培养学生概括能力,促进更好理解。现代教学论认为:数学课在经历了感性交流和实践探索以后,应该在数学层面上形成对知识客观性及其本质更为深刻理解,从而形成科学态度和严谨思维。
【《分数除法》说课稿(通用3篇)】相关文章:
2.分数除法说课稿
4.分数与除法说课稿
5.说课稿:分数除法