一、教学目标分析
一一列举是把事情发生的各种可能逐个罗列,并用某种形式进行整理,从而找到问题的答案。本课的教学目标为:进一步加深对现实问题中基本数量关系的理解,增强分析问题的有序性;进一步体会解决问题策略的多样化,增强灵活选用策略的能力。在落实教学目标方面要避免以下问题。
不重视一一列举的有序性。某些教师认为苏教版教材在教学一一列举策略之前,每个学期都或多或少地渗透了这个策略,只是没有提炼出策略名称而已。特别是四年级下册学习搭配的规律时,学生已经会不重复、不遗漏地进行搭配,因此本课无须强调有序。苏教版关于“解决问题的策略”的编排特点是,先将要学习的策略渗透到各部分内容之中,然后从四年级上册开始安排“解决问题的策略”单元,集中教学解决问题的策略,促进学生掌握一些基本的策略,提高学生解决问题的能力。这就要求教师在教学时正确处理好策略的分散教学和集中教学的关系,唤醒学生已有的一一列举经验,引导学生探究一一列举策略的内涵,学会有序思考。
呆板、僵化地理解一一列举策略。教材中的一一列举策略主要是借助表格呈现的,因此部分教师错误地认为一一列举策略就是用表格呈现所有可能的策略。事实上,列表策略强调的是用表格呈现信息,一一列举策略强调的是列出所有的可能情况。用表格列出所有可能的情况只是一一列举策略的一种具体表现形式,这种形式能较清晰地列出所有的可能,但并不是唯一的形式。教师可引导学生在掌握用列表法进行一一列举的基础上思考不用表格如何做到一一列举。
孤立地学习某种策略。苏教版教材从四年级上册开始组织学生集中学习列表、画图、一一列举、倒推、假设、替换、转化等策略。教学时,教师不能孤立地教学其中的某种策略,而应了解编者的意图,有机地将前后策略联系起来,提高策略教学的有效性。
二、教学过程
(一)感受情境,唤醒记忆
1.以“宝贝向前冲”为情境,引出3道不同年级的数学题。
(1)把7个苹果分成2堆,有哪几种分法?
(2)有3个木偶娃娃和2顶帽子,最多有多少种不同的搭配方法?
(3)用小数点和2、3、4最多可以组成几个不同的两位小数?
2.引导学生找这3道题的解法的共同特点,并想一想在解题时要注意什么。(要注意有序性,做到不重复、不遗漏。)
3.揭题。
【用学生已会解决的不同层次的3个实际问题为教学引子,唤醒学生关于有序的经验,并在反思解题的共同特点和注意点时,让学生感知本课教学的'重点——有序思考。这样的设计旨在梳理分散在各个年级的与一一列举有关的内容。】
(二)整理信息,感悟策略
例l:王大叔用18根l米长的栅栏围一个长方形羊圈,有多少种不同的围法?
1.整理信息。提问:从题目中能获得哪些数学信息?
2.出示表格。小组先动手围一围,再将不同的围法填入表格(表格主要包含长、宽、周长、面积等项目)。
3.汇报结果。交流所填表格,并思考为什么会出现重复和遗漏的现象。
4.整理表格。让学生结合具体的无序的表格谈谈怎样使之有序。
5.探寻规律。引导学生结合有序排列的表格,探寻表格中隐含的数学规律,得出:①周长不变。不管怎样围,周长都是18米。②长、宽和面积都在变。长由8米变到5米,宽由1米变到4米,相应的面积由8平方米变到20平方米。③长与宽的差越小,长方形的面积就越大。④从充分利用资源的角度考虑,应选择面积最大的围法。
6.回顾反思。引导学生回顾帮王大叔解决围羊圈问题的过程,思考有哪些收获、有哪些要注意的事项。教师归纳;用一一列举的策略能列出解决问题的所有可能策略;有序思考不仅能保证列举时不重复、不遗漏,还有助于发现规律。
【本环节旨在促进学生用表格进行一一列举,并借助表格理解基本的数量关系、发现数量的变化趋势。教学时要突显有序思考,可分四个层次展开:第一层,整理信息。为了防止学生囫囵吞枣地理解题意,可先让学生读题后说一说自己的理解,再相互交流,认识基本的数量关系。第二层,无序列举。可故意将表格多设计几行,设置陷阱,“诱使”学生出现重复或遗漏的情况,还可在学生汇报时有意展示有重复、遗漏现象的表格,让学生意识到无序会导致遗漏或重复,引发学生的思考。第三层,有序列举。引导学生思考怎样才能做到不重复、不遗漏,让学生认识到列举时要有条理、有序,体验有序的重要性,增强思维的条理性和严密性。第四层,反思提升。在回顾解决;问题的过程中,反思、感受一一列举的特点和价值。】
例2:订阅下面的杂志(图中杂志为《科学世界》、《数学乐园》、《七彩文学》,图略),最少订阅1种,最多订阅3种,有多少种不同的订阅方法?
1.学生独立整理信息,理解“最少订阅1种,最多订阅3种”的意思。
2.引导学生按独立思考——同桌交流——全班交流的步骤列出所有可能的订阅情况,重点交流订阅2种的可能情况,突出有序思考。
3.引导学生思考“如果不列表,还可以怎样列举所有可能的订阅情况”,并尝试用字母、数字、符号或其他形式表示这3种杂志,列出所有可能的订阅情况。
4.引导学生比较哪种方法简便,并说说理由。
【本环节旨在让学生进一步体会解决问题策略的多样性,增强灵活选用策略的能力。让学生探索不列表时怎样列举所有可能的订阅情况,能促使学生多视角、多形式地解决问题,有效预防学生把解决具体问题作为学习目标,或片面地将一一列举策略理解为通过表格列举的策略,提高他们灵活选用策略的能力。】
(三)解决问题,巩固策略
1.独立完成教材第64页“练一练”:“一张靶纸共3圈,投中内圈得10环,投中中圈得8环,投中外圈得6环。小华投中2次,可能得到多少环?”
2.独立思考:把“小华投中2次”改为“小华投了2次”,结果怎样?
3.说说生活中哪些地方用到了一一列举策略,具体是如何应用的。
【本环节旨在让学生独立应用一一列举策略解决实际问题,进一步内化一一列举策略。】 小学五年级数学《解决问题的策略一一列举》说课稿3
教学内容:教科书63—64页,例一、例二和练一练
教学目标:
1:使学生经历用列举的策略解决简单实际问题的过程,能通过不遗漏、不重复的列举找到符合要求的所以答案。
2:使学生早对解决简单实际问题过程的反思和交流中,感受一一列举的特点和价值。
教学过程:
一、教学例一
1、出示立体及其场景图,读题
2、提问:你能根据题意,用18根同样长的小棒先围成一个长方形?你能通过有条理的操作把不同的围法都找出来吗?
3、学生分组活动,组织交流,并把不同的围法有条理地画在黑板上。
4、提问:用18根1米长的栅栏围成的长方形羊圈的周长是多少米?如果宽是1米,长是几米?宽是2米,长是几米?
提出要求:你能把符合要求的长和宽一一列举出来吗?并找出一共有多少种不同的围法吗?
学生在表格里填一填。
追问:通过一一列举,你能发现一共有多少种不同的围法?
5、谈话:联系刚才解决问题的过程,你能说说你有什么体会?
提出:有条理地一一列举是解决这个问题的基本策略。
6、请你算出未围成的长方形的面积,并比较它们的长、宽和面积。
二、教学例二
1出示例题机器场景图,指名读题后,提问“最少订阅1本,最多订阅3本”是什么意思?
2、提问:你准备用什么策略解决这个问题?列举时,打算先考虑订阅几本的情况?接下去又要怎样思考呢?
3、学生小组讨论后,进一步追问:如果只订阅1本,有几种方法?3种呢?订2本呢?
4、给你一张表格,你会用打√的方法确定具体的订阅本数吗?
5、联系刚刚的过程,你认为要得到全部的答案,列举时要注意什么?
“既不遗漏,也不重复”
三、应用巩固
练一练,
提问:你打算用什么样的方法解决这个问题?
学生解题后,组织交流,引导学生有条理地表达列举思考时的过程。
【小学五年级数学《解决问题的策略一一列举》说课稿(通用3篇)】相关文章: