“形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力和创新精神”是《数学课程标准(实验稿)》确定的课程目标之一。解决问题的策略可理解为解决问题时的计策和谋略。解决问题策略的教学,旨在突出解决问题方法的选择、设计及运用,通过方法的运用、反思和内化促进解决问题策略的形成,有利于发展学生的实践能力和创造能力,提高学生解决问题的能力。解决问题的策略虽各有不同,但策略本身又具有共同的特性。如何把握好这些策略的特性,根据策略的特性展开教学,是提高解决问题策略教学有效性的关键。
一、策略的适用性
一般来说,不同的解题策略都能有针对性地解决某类问题。特别是,在学生初次明确地学习相关策略时,要让学生更好地体验策略的价值,教师首先要对某种策略所能解决的问题进行分析研究,找出这些问题的共同特征,这样,才能提供更典型的问题有的放矢地组织教学。例如,在有些实际问题里,条件与问题的关系不能归结为常见的数量关系,因而很难列式计算出答案,但是,与问题相符的一些可能答案却很容易凭经验或直觉得到,只要把符合题意的所有可能答案全部找到,问题也就顺利解决了,“一一列举”就是解决此类问题的策略。像周长一定的长方形有多少种不同的围法;面积一定的长方形有多少种不同的拼法;三种(不同)杂志各一本,最少订1本,最多订阅3本,共有几种不同订法等都适合用一一列举的策略解决。只有当学生体会到某种策略所能解决问题的特征,才能提高运用策略解决问题的有效性。
二、策略的价值性
学生对策略的态度有积极和消极之分。积极的态度表现为对策略有热情,感受到策略对形成解题思路的作用,具有自觉运用策略的意识和习惯。消极的态度则把策略看作负担,理解为教科书和教师的规定,是被迫进行的。因此,教师要设法让学生体会某种策略对于解决某类问题的必要性和价值,并转化成学生解决问题的内在需要,真正形成解决问题的策略。
以“一一列举”的策略为例,在让学生初步用一一列举的策略解决了周长一定的长方形有多少种不同围法后,我引导学生回顾解决问题的`方法和过程,把一一列举的策略与以前的解题方法进行比较,让学生感悟一一列举的具体含义,初步体会一一列举的特点和价值,即可以把符合要求的答案不重复、不遗漏地找出来。通过体验和分析,学生体会到一一列举的策略的确是解决此类问题的有效方法,从而对这种策略产生积极的情感体验。这样,在下次碰到类似问题时,学生会自觉运用这种策略去解决。
三、策略的体验性
策略不能直接从外部输入,只能在方法的实施过程中通过体验获得。体验是心理活动,是在亲身经历的过程中获得的意识与感受。体验使数学教学不再仅仅关注到数学事实的接受和基本技能的训练,而扩展到促进学生发展的各个方面。还是以“一一列举”的策略为例,为了让学生体验到这一策略的价值,我设计以下环节:
(1)设疑启思。
在出示问题“18根1米长的栅栏围成一个长方形羊圈,有多少种不同的围法”后,我给学生留下一定的时间思考,让他们尝试寻找答案。学生由于受经验的限制,他们中的一部分只能找到一两种符合要求的答案。这时,我又引导他们思考:怎样才能找到符合要求的全部答案呢?学生又陷入了思考。
(2)激活经验。
我让学生再次理解“不同围法”的含义,即围成的各个长方形的长和宽的米数不同。学生很自然地想到了可以从长方形的宽是1米、2米……从小到大依次地想,也可以从长方形的长是8米、7米……从大到小依次地想,学生已有的列举经验(学习10以内数的分与合)被激活了。接着我还与学生讨论交流了列举到什么时候停止,初步体会列举的有序性、周密性。
(3)回顾分析。
在解决问题后,我请学生对用列举的策略解决问题的过程进行了回顾与分析,一方面再一次明确和消化了所学知识,另一方面使学生进一步体验列举策略的价值,为他们解决类似问题积累经验。
(4)延伸拓展。
在后面的例2(订书问题)和例3(安排房间问题)的教学和练习中,我总会让学生先谈谈准备用什么策略来解决这些问题,用一一列举的策略解决这些问题有什么好处,促使学生在例1中获得的一一列举的经验能顺利实现迁移应用。
四、策略的灵活性
策略的灵活性主要体现在随着具体情境的变化,具体运用策略的形式也是灵活多样的。在列举的策略教学中,三道例题所呈现的是填表列举的形式。在练习中,有些练习已经列出了表格,学生可以填表列举,有些可以直接在图上画画、填填,找到答案,还有一些练习可以让学生自主选择列举的形式。如练习“有1克、2克、4克的砝码各一个,选其中的一个或几个,能在天平上直接称出多少种不同质量的物体?”学生在练习中有的运用了填表列举的方法,也有的用画图来说明问题:
这样的解决问题的方式比较形象、简洁。作为教师,要鼓励创新,提倡运用策略形式的个性化,这样学生在展示个性的同时,能进一步体会到“只要适合的策略就是最好的策略”。
今天,学习了《解决问题的策略》一课,对于一一列举的方法,有许多学生都在无意中用过,但是却没有把它系统化,甚至根本就没有正视它。换句话说,学生基本都认识列举的方法,这节课的学习过程主要是学生思考方法的整理过程。根据这一特点,教学中我在以下方面下了工夫。
一、遵循学生的认知规律
心理学指出,小学生思维发展的特点是由以具体形象思维为主要形式,逐步过渡到以抽象思维为主要形式。五年级学生虽然已具备了一定的抽象思维能力,但碰到问题的第一反应终究是形象化的。就比如本课例一,学生首先想到的是把围的样子摆出来或画出来,空间能力比较强的学生是直接想出来。于是,我组织学生从摆小棒入手,在摆的过程中逐步发现规律、研究规律。在小棒已显得可有可无的基础上再引导学生屏弃小棒,共同进行方法的优化。整个过程充分体现教为学服务,每一步的推进既是课堂的需要也是学生的需要,学生主宰了课堂,课堂也发展了学生。
二、关注学生的思维发展
思维是贯穿数学学习始末的一项活动,故数学被喻为思维的体操。关注学生的思维发展也即了解了学生的学习情况。因此,课上我尽量做到让学生多说,说说自己的思考过程,说说对于问题的看法,根据学生的发言中的反馈信息合理安排接下来的环节。
但是,最后的巩固环节处理得很不到位。首先试一试时三份作业一起呈现,学生比较起来无从下手,未能找到各个的特点。而接下来几题由于时间关系交流得比较仓促,没有发挥应有的作用。 五年级上册《解决问题的策略》教学反思6
转化是指把一个数学问题变更为一类已经解决或比较容易解决的问题,从而使原问题得以解决的一种策略。所以,转化是一种常见的、极其重要的解决实际问题的方法。转化的手段和具体方法是多样而灵活的,既与实际问题的内容和特点有关,也与学生的认知结构有关,掌握转化策略不仅有利于问题的解决,更有益于思维的发展。下面就解决问题的策略(转化策略)这一单元教学谈谈自己的得失:
一、感悟转化
运用转化的策略解决问题的关键是确定转化后要实现的目标和转化的具体方法。通常是把新的问题转化成熟悉的、能够解决的问题,把非常规的问题转化成常规的问题等,但要根据问题的具体情况具体分析。由于转化的手段和具体方法是多样而灵活的,既与实际问题的内容和特点有关,也与学生的认知结构有关。所以在开始的图形转化中,我放手让学生从不同的角度来理解、进行比较,感悟转化策略的优越性。
二、体验转化
策略不能直接从外部输入,只能在方法的实施过程中通过体验获得。体验是心理活动,是在亲身经历的过程中获得的意识与感受。例2在解决较复杂的分数问题时应用转化策略,进一步体验转化的意义。有利于学生在体验策略的同时,归纳和总结具体的操作方法,使学生对面积问题中的转化策略有一个完整、系统的再体验和升华。这不仅从数学思想层面提升学生的素养,而且更从解决问题的具体方法上面给学生以丰富的经验积累。具体方法的丰富反过来又深化了对转化策略的认识,这样形成的策略才能深深扎根学生的心田,才具有方法论意义上的指导、调控作用。
三、反思转化
策略的有效形成必然伴随着对自己行为的不断反思。在教学的过程中,及时地引导学生对自己解决问题的过程进行反思,有利于提高学生对自身形成策略过程的认识,从而也更加有利于学生加深对策略的进一步理解。在学习过程中,学会合作交流,经常反思,不断调整,是一种高层次的认知能力,因此我在本节课教学中,充分关注学生的自我评价与回顾反思等习惯的形成。
【五年级上册《解决问题的策略》教学反思(通用6篇)】相关文章: