人如果不会进行反思,就永远不会进步,下面是我为大家带来的长方体体积教学反思,希望大家喜欢。
《数学新课程标准》重视学生应用数学解决实际问题的能力以及通过数学的学习活动,情感与态度方面有新的发展。建构主义学者也认为,学习是现实的特定操作过程中对自己的活动过程的性质反省、抽象而产生的,“学习数学”应是一个“做数学”的过程。因此,在数学课堂中要让学生有自主探索、动手操作、合作交流,发现问题和提出问题的机会。现实、有趣、开放和具有探索性的数学教材和学习内容才是学生“做数学”的前提。如何让学生从“学数学”的过程转变到“做数学”过程中呢?
一、联系实际生活,解决实际问题
长方体和正方体体积的计算,是在理解了体积的概念和体积的单位以后教学的。我通过切开一个长3厘米、宽3厘米、高1厘米的长方体和棱长为2厘米的正方体,看看它们各含有多少个1立方厘米的体积单位,引入计量体积的方法。但是在很多情况下,是不能用切割的方法来计量物体的体积的。如:洗衣机、的、电脑主机。我让学生用棱长1厘米的正方体拼摆长方体的实验,引导学生找出计算长方体体积的方法。考虑到学习数学是为了解决实际生活中的数学问题,要让学生认识数学知识与实际生活的关系,考虑到解决问题的实际情况,(如,不是所有物体都能切开,)怎样才能更好更快的解决问题,(如,找到计算长方体体积的公式,)从而从实践上升到理论,找到解决问题的一般规律。
二、加强实际操作,发展空间观念。
体积对学生来说是一个新概念,由认识平面图形到认识立体图形,从二维空间到三维空间,是学生空间观念的一次重大的发展。然而此时,学生对立体的空间观念还很模糊,教师特别注意到加强实物或教具的演示和学生的动手操作,以发展学生的空间观念,加深对长方体计算公式的理解。在推导长方体的体积计算公式时,我是这样设计的:
师:橡皮、书、书包三样东西,谁的体积最大,谁的体积最小?
生:书包的体积最大,橡皮的体积最小。
师:你们是怎么知道的?
生:观察比较得来的。
师:(出示体积大小差不多的两个物体----铅笔盒和数学书)这两样物体的体积大小呢?
生:不知道。
生:如果有计算方法就好了。
师:像这样规则的形体的确有,但要我们学生自己去发现去寻找。首先你觉得这本书和这个铅笔盒的体积与什么有关?(鼓动大胆猜想)
学生猜想:与长、宽、高有关;与底面积有关??
学生分小组操作验证:每组分给12个1立方厘米的小正方体,让学生自己选取若干个搭建几个不同的长方体。并把长、宽、高的数据填入表格中,启发学生思考,根据记录的长、宽、高,摆这个长方体一排要摆几个小正方体,要摆几排,摆几层,一共是多少个小正方体。再引导学生进一步思考,这个长方体所含小正方体的个数,与它的长、宽、高有什么关系。
师:你发现了什么,你现在觉得长方体的体积与什么有关?
生:我们小组发现长方体的体积与它们的长、宽、高都有关,因为?? 生:我们发现长方体的体积等于长乘宽乘高,因为学生再次验证猜测,最后大家自己得出结论:长方体的体积=长×宽×高,并用字母表示:V=abh。在教学完长方体的计算公式后,继续启发学生根据正方体与长方体的关系,联系长方体体积的计算公式,引导学生自己推导出正方体体积的计算公式。
通过实际观察、制作、拆拼等活动,学生清楚地理解长方体体积计算公式的来源,并能够根据所给的已知条件正确地计算有关图形的体积。学生的动手能力也得到了提高。
三、小组合作交流、培养自主学习能力。
在新的教育观念的指导下,我在课中大胆地实践,采用小组合作交流,给学生最大限度参与学习的机会,通过教师的引导,学生自主参与数学实践活动,经历了数学知识的发生、形成过程,掌握了数学建模方法。学生在活动中表现出主动参与、积极活动的热情令我为之感动,本节课的教学目标也就达到了,因为它不仅仅让学生学会了一种知识,还让学生培养了主动参与的意识,增进了师生、同伴之间的情感交流,提高了实际操作能力,并从活动中形成了数学意识,学会了创造。
《新课程标准》明确指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”因此在本课教学的过程中,我采用让学生大胆猜想、动手实践、自主探索论证的教学方法,让学生自己动手摆一摆,做一做来研究论证长方体的体积公式,学生在做数学的过程中学到知识。从本堂课中我最大的体会就是放手让学生去学去做就是最好的教学方法。
本节课的目的是让学生通过实践活动,探索并掌握长方体、正方体体积的计算方法,并在观察、操作、探索的过程中,提高动手操作能力,进一步发展学生的空间观念。因此课一开始,我并没有设置“漂亮”的教学情境,而是在学生用数方块的方法得出几个立体图形体积的基础上,抛出一个问题,“能不能用数方块的方法来计算教室的体积?”目的有二:一是抛弃繁索的动作,直奔中心; 二是快速刺激学生的探索欲望。为后面的探活动提供了足够的情感准备,并羸得 了充分的操作探索时间。
本节课,我最满意的是长方体和正方体体积的探索过程及结果。由于在前几节课拼搭立体图形中,学生曾用8块小正方块既搭出了长方体也搭出了正方体,因此在本节课中,有好几个小组的学生通过同一次的操作活动,就能同时得出长方体和正方体的体积计算公式,并且正确地阐述了原因——正方体是特殊的长方体。同时学生能根据长方体与正方体的.关系——正方体是长、宽、高都相等的长方体,进一步的揭示了正方体的体积=棱长×棱长×棱长与长方体的体积=长×宽×高之间的联系与区别。在这一个环节的操作探索活动中,学生通过数据的记录与分析,发现长方体体积与长、宽、高(正方体体积与棱长)之间的关系,知道了求长(正)方体体积所必需具备的条件,并根据数据抽象归纳出体积公式,这当中不仅提高了学生的动手操作能力,也发展了学生的分析概括能力。同时在整个的观察、操作、探索的过程中,更进一步地理解与掌握长方体与正方体之间的联系与区别,有助于知识体系的重组与构建,学生的空间观念也得到了进一步的发展,这也是本节课的意图之一。
本节课的学生汇报环节当中,学生在汇报时语言表述有些不清楚,且汇报习惯不是很好,这跟学生平时在这个方面得到的训练机会不多有关系,也跟老师当时的心态——稍嫌急躁有着一定的关系。这提醒了我,在以后的教学过程中,要多所改进,不管是教师还是学生。