四旋翼飞行器的稳定悬停与飞行设计论文(2)

时间:2021-08-31

  3.1控制算法

  (1)飞行姿态数据:RL78G13通过MPU6050采集载体坐标系下的三轴加速度与三轴角速度,分别用axB、ayB、azB、ωxB、ωyB、ωzB表示。

  (2)数据更新:由于设计中采用四元数进行欧拉角的计算,而欧拉角将随着四元数的变化而变化,设计中采用四元数的自补偿算法进行数据的更新,如式(1)~(4)所示。式中q0、q1、q2、q3表示四元数,Δt为MPU6050的采样时间。

  (3)姿态角的计算:令ψ、θ和φ表示方向Z、Y、X欧拉角(分别称为偏航角、俯仰角和横滚角)。ψ、θ和φ的计算如式(5)~(7)所示。

  (4)补偿零点漂移:由于存在陀螺零点漂移和离散采样产生的累积误差,由载体坐标系下的三轴角速度计算得到的四元数只能保证短期的精度,需要使用集成在MPU6050芯片内部的加速度计对其进行矫正。式(8)~(10)为axB、ayB、azB的数据归一化。

  式(11)~(13)中的vx、vy、vz分别为利用四元数方法估计的四旋翼飞行器载体质心的速度在载体坐标系三轴上的分量。然后利用式(14)~(16)求出陀螺零点漂移和离散采样产生的累积误差ex、ey、ez.

  再对所得到的误差进行比例与积分,式(17)~(19)中的gx、gy、gz即为对零点漂移的补偿。

  (5)PID计算:式(20)~(22)中θd、φd、ψd分别表示下一次解算出来的俯仰角、横滚角及偏航角的值,eθ、eφ、eψ分别用来表示两次解算的俯仰角、横滚角、偏航角的误差。

  kp、ki、kd为PID的控制参数,利用PID算法通过式(23)~(25),分别求出施加在4个电机上的可调变量uψ、uθ、uφ。

  (6)输出整合:令motor1、motor2、motor3、motor4为控制4个电机的PWM输出参数,Moto_PwmMin为PWM基础量(根据不同情况设定,一般为0)。根据理论计算,施加在4个电机上的PWM输出信号如式(26)~(29)所示。

  3.2参数整定与调试

  设计中采用PID控制算法进行四旋翼飞行器的控制,I是积分项,积分项会随着时间的增加而增大,能够消除系统进入稳态后存在的稳态误差,但是在实际调试过程中,通过增大P值可以抑制稳态误差[2],因此主要是采用PD的控制方式。调试过程中,对P、D值的同时调整会产生的两种控制效果的叠加,以致无法进行每一控制参数的影响分析,故先使D值为零,P值由0增加,初次调试时,四旋翼飞行器自身不存在调节,当P值增加时,根据式(23)~(25)计算所得的uψ、uθ、uφ值均增加,再经式(26)~(29)后,施加在4个空心杯电机上的PWM控制信号均有所变化。调试中,为了防止四旋翼飞行器控制出错而损坏硬件,故将四旋翼飞行器以X字型倒挂固定在一根活动的长杆上,当P值由0增加到4时,四旋翼飞行器出现了翻滚的飞行状态,表明P开始对整体系统起作用,逐渐增大P值,四旋翼飞行器开始产生大幅度的等幅振荡,当P值增大到14时,振荡幅度减至最低,四旋翼飞行器几乎稳定,再增加P值,四旋翼飞行器又开始进行等幅振荡,说明P值为14时为系统自稳的一个分界点。根据查阅的大量资料了解到D值是通过预测系统误差的变化来减少系统的响应时间,提高系统的稳定性[3].调试过程中,逐渐增加D值,当D值增加至0.8时,四旋翼飞行器的自身调节更快,稳定性更高。同时D值的增加会对P值有一定的影响,最终确定P值为13.8、D值为0.8时,系统稳定飞行于长杆上方。当去掉长杆时,四旋翼飞行器能够稳定飞行,但随着飞行时间增加,飞行稳定性越来越差,因此考虑了姿态补偿问题。

  3.3姿态补偿

  在实际调试过程中发现,电池处于满电状态与大幅度消耗状态下,四旋翼飞行器的飞行姿态存在较大差异:满电状态下,各部分电路工作稳定,电机转速正常,当电池的电量持续消耗时,电机的转速不断降低,因此四旋翼飞行器的整体性能处于下降趋势,为了消除这一影响,利用RL78G13实时检测电池电压,并适时调整PWM输出信号来实现四旋翼飞行器的飞行姿态补偿。由式(26)~(29)知,通过增大Moto_PwmMin可以增大施加在四路电机上的PWM信号,进而增大电机转速,可以实现对飞行姿态进行补偿[4].经调试知,当RL78G13检测到3.7V的电压降到3.5V时,将Moto_PwmMin增至100对飞行姿态的补偿最佳,随后电压值的下降与Moto_PwmMin值的增加基本呈非线性的关系,经大量实验验证,补偿系数符合式(30)的规律,式中u1代表电池当前的电压值。

  当检测到的电压值低于2.6V时,飞行姿态将无法得到补偿,必须停止飞行。将式(30)分别代入式(26)~(29),得到(31)~(34),此4式则为最终施加到4路电机的PWM控制信号。4结论

  实验结果表明,本文所设计的四旋翼飞行器结构简易、飞行姿态灵活,实现了空中稳定悬停及按预设路线飞行等两种飞行功能,并实现了无线参数的给定,满足了设计的技术指标与功能要求,解决了因供电电压不断降低而导致的控制不稳的问题。为推动四旋翼飞行器技术的发展提供了很好的参考设计方案。

  参考文献:

  [1]胡从坤,余泽宇,陈曦晨。四旋翼飞行器控制系统研究[J].科技广场,2014(6):50-56.

  [2]宿敬亚,樊鹏辉,蔡开元。四旋翼飞行器的非线性PID姿态控制[J].北京航空航天大学学报,2011,37(9):1054-1058.

  [3]阮旭日,王史春。新型四旋翼飞行器设计与制作[J].科技视界,2015(3):21.

  [4]易先军,周敏,谢亚奇。四旋翼飞行器控制系统的设计与实现[J].武汉工程大学学报,2014,36(11):59-62.

【四旋翼飞行器的稳定悬停与飞行设计论文】相关文章:

1.浅谈基于SolidWorks 和ANSYS 的一种四旋翼飞行器旋翼的设计及分

2.我的飞行器作文

3.《我的太空飞行器》教案设计

4.飞行器大战小学日记

5.书本就是时空飞行器随笔

6.未来的飞行器想象作文

7.未来的太阳能飞行器作文

8.四年级美术《万能飞行器》的教学反思