未来出行最佳方式探讨论文(2)

时间:2021-08-31

  在此限于篇幅仅对各项改进措施简述如下:通过汽车性能优化来减小转弯半径及滞留时间、提高汽车通过性和道路通行能力;推广可提高交通资源利用率1倍多的节源环保型电动微轿车作为普及型私家车;通过优化公交线路布局、多形式快速公交专车及改善公交设施等多项改进公交服务措施来提高公交车的载坐率;推出增加相应辅助设施与服务功能的高效出租车以提高其车载率;通过互通交叉立交桥、环岛形交叉路口、智能交通灯控制、经喇叭形延伸扩展交叉路口等多项措施解决最易引起拥堵的交叉十字路瓶颈口;推出可专载行人和非机动车的低平板轮毂式电动过渡车以解决交叉路口机非交织混行问题;建造占地面积小的立体车库以解决市区停车难;充分发挥交警在交通管理中的重要作用,将工作变被动为主动来提高实效性。

  短途换乘方式主要有出租车、公交车、自驾车或自行车等,对此在前述为改善交通所提的多项改进措施中均有相应阐述。由于人们对此除了希望便捷、舒适、安全和准时,还有随机性与个性化要求,为能同时满足该多项要求,特提出一种可供自助刷卡租用的自驾车,所以在此重点说明该自驾车短途换乘方式。该车以前述可提高交通资源利用率1倍多的3人座节源环保型电动微轿车为基型。其自动租用方式可参考杭州早已推出的采用公交信用卡自动借用公交自行车的服务形式。即凭具有数年无相关违章驾驶记录的驾照和身份证,预交相应保证金办理电动微轿车自动租用信用卡,而电动微轿车租用点主要设在火车站、飞机场,并在市区设置多个蓄电池快速更换服务站(由于所配蓄电池容量不大,若采用专用器具更换约2分钟就可完成,比传统加油还快)。用户最终按所驶里程数缴纳租金。当然该电动微轿车还须配有GPS自动导航系统,使外地游客也能以自驾游方式便利地到达随意要去的地方。可以想象该电动微轿车租用服务的实施和推广,将为我们的出行带来极大的方便,并为节能减排、资源共享以及推广电动汽车等都将开辟一种良好的先河。由于该车成本估计仅为1.5~3万元,即可便于实施。

  为弄明白电动微轿车为何成本能如此低,以及它的`结构、性能特点和运行成本等。还需先概况说明如何提高电动汽车性价比的有关研究,这也是对电动汽车迟迟未能普及商品化的原因分析。现所研发的电动汽车由于受传统汽车设计思路所束缚,其结构没能从充分发挥电机驱动应有的各种技术优势作突破性改进,使性价比也难有突破性提高。通过对发动机与电动机的调速动力特性分析比较,说明电动汽车用电机驱动相对发动机有数千倍的调速比、数百倍的快速响应性、相当的短时过载能力以及节能等诸多优势。而电机各项优势的充分发挥,必须通过对电动汽车的结构作突破性变革与优化,以此达到简化机械机构、降低成本和车载自重、节能减噪、提高动态响应及控制性能,即提高电动汽车性价比来使其尽快普及商品化。

  作为新兴的机电一体化电动汽车的研发,除了运用传统汽车理论——车辆动力学,更应以电机拖动理论及其控制理论为基础,并还需遵循交通管理理论及技术与市场经济须互为促进的规律。电动汽车的最大不同点是以电机驱动为动力源,所以须按电机拖动理论找出最适合汽车多变行驶工况特点的电机类型和最佳驱动结构形式。为改善整车性能和电机控制要求,按控制理论分析,需提高汽车对驱动、制动和转向三大执行机构的快速响应性,利用当今迅猛发展的微电子等技术,通过检测反馈控制来极大地提高性能。为使汽车高效、便捷功能真正发挥,须以交通畅通为前提,按交通管理理论分析,即需从提高交通资源利用率来考虑车型。为使技术与经济互为促进发展,需按现有技术绕其瓶颈找出即刻可使电动车普及商品化的突破口。

  汽车驱动、制动、转向三大执行机构即是制约整辆汽车性能的主要环节,其快速响应性也是决定操控汽车安全稳定行驶的重要因素。针对传统汽车的发动机驱动、由液压等方式制动和转向助力因摩擦阻尼使动态响应均较慢,从而制约整车性能难以有效提高。为此综合多项技术深入分析与研究,利用电机的电与磁转换是按光速进行的动态响应过程,提出能全面提高电动汽车驱动、制动、转向三大执行机构的快速响应性和性价比的四项发明专利:兼有电动、发电回馈和电磁制动功能的磁阻式轮毂电机;具有启动绕组的单相开关磁阻式多功能轮毂电机;基于直线电机控制的汽车转向系统;四轮毂电机驱动四轮转向电子差速控制系统。汽车驱动电机采用结构简单、坚固可靠、电机与控制器综合成本低、调速性能好、效率高等优点的变磁阻电机,它与交流变频或永磁无刷等电机相比,特别具有高起动转矩、可控起动电流和较高的短时过载能力,更适于汽车重载起步,频繁起停、升降速的多变工况以及蓄电池需避免大电流输出等各种特殊要求。通过结构改进又提高了电磁制动效能,而发电回馈-电磁制动相结合反复进行的制动过程,类似于防抱死制动系统ABS或驱动防滑转控制ASR的制动过程,提高了安全制动效果。而采用“零传动”方式的轮毂电机直接驱动车轮,极大地简化机械传动结构,降低了成本和车载自重,提高了车轮控制的快速响应性、驱动效率和制动能量回收率,有利于节能减噪,还腾出许多空间便于汽车总体布局。鉴于轮毂电机功率受结构体积限制,采用四台轮毂电机替代常规的一台电机以实现小马拉大车,而四轮驱动提高了地面附着力以增强操控车辆行驶稳定性等。为电动汽车确立了最佳电机驱动方式。

  高储能装置可用燃料电池或各类蓄电池等。鉴于现有技术主要为蓄电池,并应尽可能采用对我国有得天独厚资源优势的锂电池。另据报道有一种即可作充电电池,也可作燃料电池的锂-空气电池,按理论分析作充电电池用,比能量可高于现有锂离子电池十几~数十倍,而作燃料电池用,能量密度和更换时间均有望优于传统的加油方式,但要进入实际应用还有待时日。

  由直线步进电机控制的四轮驱动四轮转向电子差速转向系统是在四轮毂电机驱动基础上,结合另两项专利技术而组成。由直线步进电机直接带动转向机构的左右横拉杆,使控制更直接,动态响应更快,且省去了大量机械或液压部件,使结构更简捷。利用直线步进电机的控制特点,可方便地充分满足转向力随车速变化的各控制要求,并提高了转向精度和其性价比。采用四轮转向又可极大地减小低速转弯半径、提高高速转向稳定性和响应快速性。