三、解答题(每题10分,共60分)
21.(1)计算
(2)解方程组
22.某水果种植场今年收获“妃子笑”和“无核1号”两种荔枝共3200千克,全部售出后卖了30400元,已知“妃子笑”荔枝每千克售价8元,“无核1号”荔枝每千克售价12元,问该种植场今年这两种荔枝各收获多少千克?
23.已知函数y=kx+b的图象经过点A(-3,-2)及点B(1,6)
(1)求此一次函数解析式;
(2)求此函数图象与坐标轴围成的三角形的面积。
24.列方程组解应用题:
据统计,某市第一季度期间,地面公交日常客运量与轨道交通解决日常客运量总和为1690万人次,地面公交日常客运量比轨道交通日常客运量的4倍少60万人次,在此期间,地面公交和轨道交通日常客运量各为多少万人次?
25.某中学数学活动小组为了调查居民的用水情况,从某社区的1500户家庭中随机抽取了30户家庭的月用水量,结果如下表所示:
月用水量(吨) 3 4 5 7 8 9 10
户 数 4 3 5 11 4 2 1
(1)求这30户家庭月用水量的平均数,众数和中位数;
(2)根据上述数据,试估计该社区的月用水量;
(3)由于我国水资源缺乏,许多城市常利用分段计费的办法引导人们节约用水,即规定每个家庭的月基本用水量为m(吨),家庭月用水量不超过m(吨)的部分按原价收费,超过m吨部分加倍收费,你认为上述问题中的平均数、众数、中位数中哪一个量作为月基本用水量比较合理?简述理由。
26.康乐公司在A、B两地分别有同型号的机器17台和15台,现要运往甲地18台,乙地14台,从A、B两地运往甲、乙两地费用如下表:
甲地(元/台) 乙地(元/台)
A地 600 500
B地 400 800
(1)如果从A地运往甲地x台,求完成以上调运所需总费用y(元)与x(台)之间的函数关系式?
(2)请你为康乐公司设计一种最佳调运方案,使总费用最小,并说明理由。