人教版六年级下册数学教案

时间:2021-08-31

关于人教版六年级下册数学教案锦集9篇

  作为一无名无私奉献的教育工作者,时常需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。教案应该怎么写呢?以下是小编帮大家整理的人教版六年级下册数学教案9篇,欢迎大家分享。

人教版六年级下册数学教案 篇1

  一、游戏导入

  1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

  ①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。

  2、下面我们来难度大些的,看谁反应最快。

  ①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。

  ③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄氏度(零下10摄氏度)。

  说明什么是相反意义的量(意义正好相反)

  3、谈话:周老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

二、教学例1

  1、认识温度计,理解用正负数来表示零上和零下的温度。

  课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。

  这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?

  B、现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。

  (2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)

  指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。

  (3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?

  (4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。

  ① 上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

  负号能不能省略不写?为什么?

  ② 北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

  (5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。

  2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)

  3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。

  4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

三、学习珠峰、吐鲁番盆地的海拔表达方法

  1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。

  2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?

  3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。

  你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。

  4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?

  (1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。

  吐鲁番盆地的海拔可以记作:-155米。(板书)

  (2)小小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。

人教版六年级下册数学教案 篇2

  教学内容:

  比较正数和负数的大小。

教学目的:

  1、借助数轴初步学会比较正数、0和负数之间的大小。

  2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

  教学重、难点:负数与负数的比较。

教学过程:

  一、复习:

  1、读数,指出哪些是正数,哪些是负数?

  -8 5.6 +0.9 - + 0 -82

  2、如果+20%表示增加20%,那么-6%表示 。

  二、新授:

  (一)教学例3:

  1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

  2、出示例3:

  (1)提问你能在一条直线上表示他们运动后的情况吗?

  (2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

  (3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

  (4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

  (5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

  (6)引导学生观察:

  A、从0起往右依次是?从0起往左依次是?你发现什么规律?

  B、在数轴上除可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?

  (7)练习:做一做的第1、2题。

  (二)教学例4:

  1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

  2、学生交流比较的方法。

  3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

  4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

  5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

  6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。

  7、练习:做一做第3题。

  三、巩固练习

  1、练习一第4、5题。

  2、练习一第6题。

  3、某日傍晚,黄山的气温由上午的零上2摄氏度下降7摄氏度,这天傍晚黄山的气温是 摄氏度。

  四、全课总结

  (1)在数轴上,从左到右的顺序就是数从小到大的顺序。

  (2)负数比0小,正数比0大,负数比正数小。

  第二课教学反思:

  许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。

  例3——两个不同层面的拓展:

  1、在数轴上表示数要求的拓展。

  数轴除可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。

  同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

  2、渗透负数加减法

  教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

  例4——薄书读厚、厚书读薄。

  薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)

  例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘三种不同类型,一一请学生介绍比较方法,将薄书读厚。

  将厚书读薄——无论哪种类型,比较方法万变不离其宗。