教材分析:
本单元内容是在学生已经学过比的意义、比的化简与比的应用的基础上学习的。《反比例》内容是前面学习“变化的量”,“正比例”等比例知识的深化,是以后学习函数的基础,起着承前启后的作用,是小学阶段比例初步知识教学中的一项重要内容。反比例关系是数学中比较重要的数量关系,而学生理解反比例的含义往往比较困难。为此,教材密切联系学生已有的生活经验和学习经验,创设了三个情境,让学生体会生活中存在大量相关联的量,它们之间的关系有着共同之处,使学生从常量的世界进入了变量的世界,开始接触一种新的思维方式,从而引发学生的讨论和思考,并通过对具体问题的讨论,使学生认识成反比例的量以及反比例在生活中的广泛存在。
学情分析:
学生已经学习了“变化的量”和“正比例”的有关知识,对比例知识有了初步的了解 ,因此,在教学时依据教材特点,从学生的实际生活经验和知识水平出发,采用“小组合作交流”的教学方法,让尽可能多的学生主动参与到学习过程中,通过独立思考,合作交流,让学生在原有正比例知识经验的基础上,积极主动去建构新知,最大限度充分发挥学生主观能动性,通过学生观察、思考、感知、交流、比较、归纳等数学教学活动,探究新知,体验到成功的愉悦。
设计理念及意图
《数学课程标准》明确指出:“自主探索与合作交流是学生学习数学的重要方式”。因此,在教学时充分相信学生,放手让学生在合作交流的基础上,主动探究,自己去发现。为此,教学时先复习一些基本的数量关系,使知识间发生迁移,在此基础上探求新知,最后深化新知。
教学目标:
1、知识与能力:
(1)、结合丰富的实例,认识反比例。
(2)、能根据反比例的意义,初步判断两个相关联的量是不是成反比例,并能解决生活中的实际问题。
2、方法与途径:
在互动、探究的合作交流活动中,培养学生观察、思考、比较、归纳概括的能力。
3、情感与评价:
使学生在自主探索合作交流中体验成功的愉悦,感受反比例关系在生活中的广泛应用。
教学重点:
理解反比例的意义,掌握判断两种量是否成反比例的方法。
教学难点:
通过具体情境认识成反比例的量,掌握判断两种量是否成反比例的方法。 教学准备:多媒体课件。 教学过程
一、复习铺垫,引入课题﹙出示课件﹚
1、复习:判断下面各题中两种量是否成正比例。
﹙1﹚、文具盒的单价一定,买文具盒的个数和总价
﹙2﹚、一堆货物一定,运出的和剩下的
﹙3﹚、汽车行驶的路程一定,行驶的速度和时间
2、谈话引入:
汽车行驶的路程一定,速度和时间这两种相关联的量不成正比例,那么它成不成比例呢?又会成什么比例?这就是今天要解决的问题。﹙出示课题:反比例﹚今天老师就和同学们一道共同探讨反比例的变化规律。
设计意图?通过复习,巩固学生对正比例意义的理解。学生从中发现第3小题不成正比例,那么它成不成比例呢?又会成什么比例?引入课题。通过设疑不仅激发了学生学习数学的兴趣,还激起了学生自主参与的积极性和主动性,为学习新知作铺垫,也为自主探究新知创造了条件并激发了积极的情感态度。?
二、教师引导,自主探索
﹙一﹚初步感知理解两个变化关系的不同。﹙出示情境﹝1﹞﹚
1、教师引导学生观察分析加法表。
你们发现了什么?(1)图中表示的是谁与谁之间的关系?
让学生自己总结出:和不变,一个加数随另一个加数的变化而变化,并且所有和为12的数都在同一条直线上。
2、引导学生观察分析“乘法表”中两个量的变化关系。
(2)图中表示的是谁与谁之间的关系?
﹙学生感知积不变,一个因数随另一个因数的变化而变化,一个因数扩大(缩小)另一个因数反而缩小(扩大),并且所有积为12 的数成一条曲线﹚
3、师生共同小结:
由此可见,对于“加法表”和“乘法表”中的两个变量,都是一个量变化,另一个量也随着变化,但是它们的变化关系是不同的。“加法表”表示的是和一定两个加数之间的'关系,而“乘法表”表示的是积一定两个乘数之间的关系。所有和为12的数都在同一条直线上,积为12 的数成一条曲线。
﹙二﹚探索理解反比例的意义。
1、出示情境﹝2﹞
﹙1﹚ 教师引导学生观察表格,把表格填写完整。 王叔叔要去游长城。不同的交通工具所需时间如下。
﹙3﹚寻找规律:你是怎么知道路程不变的?用表中的数据说明。﹙同桌合作交流﹚ 学生讨论反馈:10×12=120 40×3=12080×1.5=120 ?
﹙4﹚小结:速度×时间=路程 ﹙一定﹚
2、出示情境
﹝3﹞﹙小组合作交流﹚
师:请同学们在小组内互相讨论交流,并围绕这三个问题进行讨论。
﹙1﹚ 填表:
﹙3﹚分的杯数是怎样随着每杯的果汁量变化的?
﹙4﹚它们的变化规律是什么?用表中的数据说明。
每杯的果汁量×分的杯数=果汁总体积 ﹙一定﹚
3、学生合作交流比较情境
﹝2﹞和情境﹝3﹞的共同点,比较概括反比例的概念。
﹙1﹚比较一下情境﹝2﹞和情境﹝3﹞,请同学们在小组中讨论一下,互相说说这两个例题有什么共同的特征?
﹙2﹚学生归纳概括反比例意义的概念:
反比例概念:两种相关联的量,如果一种量扩大(或缩小)几倍,另一种量反而缩小(或扩大)相同的倍数,这两种量相对应的两数的积一定。那么,这两种量叫做成反比例的量,它们之间的关系叫做反比例关系。
如果用字母X、Y表示两种相关联的量,用K表示积(一定),情境1、情境2所讲的数量关系可以概括成怎样的式子?
学生回答后板书:XY=K(一定)
4、学生归纳总结判断两个量是不是成反比例的方法:判断两个量是不是成反比例,主要是看这两种相关联量的积是不是一定的,同时,还要看这两个量变化规律。
﹙三﹚练习:讨论“加法表”和“乘法表”中两个量是否成反比例。
﹝设计意图:通过让学生观察情境﹝二﹞和情境﹝三﹞,在学生思考、交流合作、比较的基础上,归纳反比例的概念。归纳总结判断两个量是不是成反比例的方法。最后又对“加法表”和“乘法表”中两种关系进行分析讨论,解决了开始提出的问题,巩固了本节课的教学内容﹞
三、解决问题
1、判断下面每题中的两个量是否成反比例?并说明理由。﹙出示课件﹚ 指名学生口答,要求说出数量关系式判断。
﹙1﹚煤的总量一定,每天的烧煤量和能够烧的天数。
﹙2﹚张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。
﹙3﹚生产电视机的总台数一定,每天生产的台数和所用的天数。
﹙4﹚跳高的高度和她的身高。
﹙5﹚苹果的单价一定,购买苹果的数量和总价。
2、找一找生活中还有哪些成反比例的例子?
﹝设计意图:通过五道练习题,运用正反比例的知识判断两种量是不是成反比例关系,进一步加深了对反比例关系的认识,又巩固了正比例的知识。最后又通过找一找环节,学生说出生活中成反比例的例子,让学生感受到了反比例关系在生活中的广泛应用。﹞
四、全课总结,深化提高
这节课,你们有了什么新的收获?把你们的收获告诉大家。
﹝设计意图:让学生反思本课学习所得,把自己的收获告诉同学。这一过程,是知识再现的过程,又是再次学习、巩固的过程。﹞
五、布置作业:P26 1、2、3题。
板书设计:
反比例:两种相关联的量,一种量扩大(或缩小)几倍,另一种量反而缩小(或扩大),积一定。
XY=K(一定)
【小学反比例课件】相关文章:
2.反比例函数k课件