有理数的除法法则教案

时间:2021-08-31

  一、教学目标

有理数的除法法则教案

  知识与技能:

  ①使学生在了解乘法的基础上,掌握有理数乘法法则并初步掌握有理数乘法法则的合理性。

  ②会进行有理数乘法运算。

  ③了解有理数的倒数定义,会求一个数的倒数。

  过程与方法:

  ①经历探索有理数乘法法则,发展,观察,归纳,猜想,验证的能力以及培养学生的语言表达能力。

  ②提高学生的运算能力

  情感与态度:通过合作学习调动学生学习的积极性,激发学生学习数学的兴趣,提高学生认识世界的水平。

  二、 教学重点和难点

  重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;

  难点:有理数乘法中的符号法则.

  三、教学过程

  (一) 创设问题情景,激发学生的求知欲望,复习旧知,导入新课

  前面我们学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题:甲水库的水位每天升高3㎝,乙水库的水位每天下降3㎝。4天后,甲、乙水库各自水位的总变化量是多少?

  如果用正号表示水位的上升、用负号表示水位的下降。那么,4天后,甲水库水位的总变化量是:3+3+3=34=12㎝

  乙水库水位的总变化量是:(-3)+(-3)+(-3)+(-3)=(-3)4=-12㎝引出课题:有理数的乘法

  (二)学生探索新知,归纳法则

  学生分为四个小组活动,进行乘法法则的探索

  设蜗牛现在的位置为点O,若它一直都是沿直线爬行,而且每分钟爬行2cm,问:

  (1)向右爬行,3分钟后的位置?

  (2)向左爬行,3分钟后的位置?

  (3)向右爬行,3分钟前的位置?

  (4)向左爬行,3分钟前的位置?

  (学生思考后回答) 要确定蜗牛的位置需要知道:距离和方向。

  为了区分方向:我们规定向右为正,向左为负;为区分时间:我们规定现在的时间前为负,现在的时间后为正。

  (1) 情形一:蜗牛在现在位置的右边6㎝处。式子表示为:

  (+2)(+3)=+6

  数轴表示如右:

  (2)情形二:蜗牛在现在位置的左边6㎝处。式子表示为: (-2)3=-6

  数轴表示如右:

  (3)情形三:蜗牛在现在位置的左边6㎝处。式子表示为: (+2)(-3)=-6

  数轴表示如右

  (4)情形四:蜗牛在现在位置的右边6㎝处。式子表示为: (-2)(-3)=+6

  数轴表示如右:

  仔细观察上面得到的四个式子:

  (1)(+2)(+3)=+6

  (2)(-2)3=-6

  (3)(+2)(-3)=-6

  (4)(-2)(-3)=+6

  根据你对乘法的思考,你得到什么规律?

  (三)学生归纳法则

  a.符号:在上述4个式子中,我们只看符号,有什么规律?

  (+)(+)=( ) 同号得

  (-)(+)=( ) 异号得

  (+)(-)=( ) 异号得

  (-)(-)=( ) 同号得

  b.任何数与零相乘,积仍为 。

  (四)师生共同用文字叙述有理数乘法法则。

  归纳:有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

  任何数与0相乘,积仍为0。

  (五) 运用法则计算,巩固法则。

  例1计算:(1) (-5) (2) (-7) (3) (-3) (4)(-3) (- )

  引导学生观察、分析例1中(4)小题两因数的关系,得出:有理数中仍然有:乘积是1的两个数互为倒数.

  例2. 见课本P30页

  (六)分层练习,巩固提高。

  (1)计算(口答):

  ① ② ③ ④

  ⑤ ⑥ ⑦ ⑧

  四.课题小结

  (1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0。

  (2)如何进行两个有理数的乘法运算: 先确定积的符号,再把绝对值相乘,当有一个因数为零时,积为零。

  五.作业布置

  课本P30页练习1,2,3.

  1.4.2 有理数的乘法

  (第2课时)

  一、教学目标:

  1、经历探索多个有理数相乘的符号确定法则.

  2、会进行有理数的乘法运算.

  3、通过对问题的探索,培养观察、分析和概括的能力.

  二、教学重点和难点

  学习重点:多个有理数乘法运算符号的确定

  学习难点:正确进行多个有理数的乘法运算

  三、教学过程

  (一)、学前准备

  请同学们先合作做个游戏: 用9张扑克牌(可以替代的纸片也行)全部反面向上放在桌上,每次翻动其中任意2张(包括已翻过的牌),使它们从一面向上变为另一面向上,这样一直做下去,看看能否使所有的牌都正面向上?

  结果怎么样,你能明白其中的数学道理吗?

  (二)、探究新知

  1、观察:下列各式的积是正的还是负的?

  234(-5),

  23(-4)(-5),

  2(3) (4)(-5),

  (-2) (-3) (-4) (-5).

  思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?

  分组讨论交流,再用自己的语言表达所发现的规律:

  几个不是0的数相乘,负因数的个数是 偶数 时,积是正数;负因数的个数是 奇数 时,积是负数.

  2、利用所得到的规律,看看翻牌游戏中的数学道理。

  (三)、新知应用

  1、例题3,(30页)例3,

  请你思考,多个不是0的数相乘,先做哪一步,再做哪一步?你能看出下列式子的结果吗?如果能,理由 几个数相乘,如果其中又因数为0,积等于0

  例:7.8(-8.1)O (-19.6)

  师生小结:几个数相乘,如果其中又因数为0,积等于0

  2、练习

  计算

  1)、58(7)(0.25) 2)、

  四、课堂小结

  1、通过这节课的学习,我的感受是:几个数相乘,如果其中又因数为0,积等于0

  五.作业布置

  一、选择

  1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )

  A.一定为正 B.一定为负 C.为零 D. 可能为正,也可能为负

  2.若干个不等于0的有理数相乘,积的符号( )

  A.由因数的个数决定 B.由正因数的个数决定

  C.由负因数的个数决定 D.由负因数和正因数个数的差为决定

  3.下列运算结果为负值的是( )

  A.(-7)(-6) B.(-6)+(-4); C.0 (-2)(-3) D.(-7)-(-15)

  4.下列运算错误的是( )

  A.(-2)(-3)=6 B.

  C.(-5)(-2)(-4)=-40 D.(-3)(-2)(-4)=-24

  二、计算 1、(-7.6) 2、 .

  1.4.3 有理数的乘法

  (第3课时)

  一、教学目标:

  1、熟练有理数的乘法运算并能用乘法运算律简化运算.

  2、让学生通过观察、思考、探究、讨论,主动地进行学习.

  3、培养学生语言表达能力以及与他人沟通、交往能力,使其逐渐热爱数学这门课程.

  二、教学重点和难点

  教学重点:正确运用运算律,使运算简化

  教学难点:运用运算律,使运算简化

  三、教学过程

  一、学前准备

  1、下面两组练习,请同学们选择一组计算.并比较它们的结果:

  1)(-7)8 8(-7)

  [(-2)(-6)]5 (-2)[(-6)5]

  2)(- )(- ) (- )(- )

  [ (- )](-4) [(- )(-4)]

  3)

  请以小组为单位,相互检查,看计算对了吗?

  二、探究新知

  1、下面我们以小组为单位,仔细观察上面的式子与结果,把你的发现相互交流交流.

  2、怎么样,在有理数运算律中,乘法的交换律,结合律以及分配律还成立吗?

  3、归纳、总结

  乘法交换律:两个数相乘,交换因数的位置,积 相等 .

  即:ab= ba

  乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积 相等

  即:(ab)c= a(bc)

  乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加

  即:a(b+c)=ab+bc

  三、新知应用

  1、例题

  用两种方法计算 ( + - )12

  2、看谁算得快,算得准

  1)(-7)(- ) 2) 9 15.

  四、课堂小结

  怎么样,这节课有什么收获,还有那些问题没有解决?

  乘法交换律:两个数相乘,交换因数的位置,积 相等 .

  即:ab= ba

  乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积 相等

  即:(ab)c= a(bc)

  乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加

  即:a(b+c)=ab+bc

  五.作业布置

  1、(-85)(-25) 2、(- )15(-1 );

  3、( ) 4、 (7).

  5、-9(-11)+12(-9) 6、

  1.4.4 有理数的除法

  (第4课时)

  一、教学目标:

  1、理解除法是乘法的逆运算;

  2、掌握除法法则,会进行有理数的除法运算;

  3、经历利用已有知识解决新问题的探索过程.

  二、教学重点和难点

  教学重点:有理数的除法法则

  教学难点:理解商的符号及其绝对值与被除数和除数的关系

  三.教学过程

  (一)、学前准备

  1、师生活动

  1)、小明从家里到学校,每分钟走50米,共走了20分钟.

  问小明家离学校有 1000 米,列出的算式为 50 20=1000 .

  2)放学时,小明仍然以每分钟50米的速度回家,应该走 20 分钟.

  列出的算式为 1000 =20

  从上面这个例子你可以发现,有理数除法与乘法之间的关系互为逆运算

  (二)、合作交流、探究新知

  1、小组合作完成

  比较大小:8(-4) 8(一 );

  (-15)3 (-15)

  (一1 )(一2) (-1 )(一 )

  再相互交流、并与小学里学习的乘除方法进行类比与对比,归纳有理数的除法法则:1)、除以一个不等于0的数,等于 乘这个数的倒数.

  2)、两数相除,同号得 正 ,异号得 负 ,并把绝对值相 加减 ,0除以任何一个不等于0的数,都得 0 .

  2,运用法则计算:

  (1)(-15)(-3); (2)(-12)(一 ); (3)(-8)(一 )

  3,师生共同完成P34例5.

  (三)1、练习:P35

  2、P35例6、例7、

  3、练习: P36第1、2题

  四.课堂小结

  通过这节课的学习,你的收获是:

  1)、除以一个不等于0的数,等于 乘这个数的倒数.

  2)、两数相除,同号得 正 ,异号得 负 ,并把绝对值相 加减 ,0除以任何一个不等于0的数,都得 0 .

  五.作业布置

  1、计算

  (1)(+48)(+6); (2) ;

  (3)4(-2); (4)0(-1000).

  2、计算.

  (1)(-1155)[(-11)(+3)(-5)]; (2)375

  1、P39第1、2、3、4题

  1.4.5有理数的除法

  (第5课时)

  一、教学目标:

  1、学会用计算器进行有理数的除法运算.

  2、掌握有理数的混合运算顺序.

  3、通过探究、练习,养成良好的学习习惯

  二、教学重点和难点

  1、学习重点:有理数的混合运算

  2、学习难点:运算顺序的确定与性质符号的处理

  三、教学过程

  (一)、学前准备

  1、计算

  1)(0.0318)(1.4) 2)2+(8)2

  (二)、探究新知

  1、由上面的问题1,计算方便吗?想过别的方法吗?

  2、由上面的问题2,你的计算方法是先算 乘除 法,再算 加减 法。

  3、结合问题1,阅读课本P36P37页内容(带计算器的同学跟着操作、练习)

  4、结合问题2,你先猜想,有理数的混合运算顺序应该是 先算乘除法,再算加减法 。

  5、阅读P36,并动手做做

  三、新知应用

  1、计算

  1)、186(2) 2)11+(22)3(11)

  3)(0.1) (100)

  四.课堂小结:请你回顾本节课所学习的主要内容:

  1、有理数的混合运算顺序应该是 先算乘除法,再算加减法 。

  2、计算器的使用。

  五、作业 1、P39第7题(4、5、7、8)、 第8题

[有理数的除法法则教案]相关文章: