ANSYS学习总结范文(2)

时间:2021-08-31

  1.3练习使用ANSYS最好直接找力学专业书后的习题来做

  可能这一点与学习ANSYS的一般方法相背,我开始学ANSYS时也是照着书上现成的例子做,但照着书上的做就是做不出来,实在没有耐心,就干脆从书上(如材力,弹力)直接找些简单的习题来做。尽管简单,但每一步都需要自己思考,只有思考了的东西才能成为自己的东西,慢慢的自己解决的问题多了,运用ANSYS的能力提高相当明显,这可能是我无意中对学ANSYS在方法上的一点创新吧。我

  觉得直接从书上找习题做有以下好处: 从书上找习题练习是一种更加主动的学习方法,由于整个分析过程都要独立思考,实际上比照着书上练习难度更大。对初学者来说,照着书上练习很难理解为什么要这么做,因此,尽管做出来了,但以后遇到类似问题可能还是不知道 。

  书上现成的例子基本上是非常经典的,是不可能有错的,一旦需要独立解决问题时,由于没有对错误的处理经验,遇到错误还是得要从头摸索,可以说,ANSYS的使用过程就是一个解决ERROR的过程,ERROR实际上提供了问题的解决思路,而自己找问题做,由于水平并不高,必将会遇到大量的ERROR,对这些ERROR的解决,经验的积累就是ANSYS运用能力的提高。

  将书上的习题用ANSYS来实现,可以将习题的理论结果和ANSYS计算的数值结果进行对比,验证ANSYS计算结果的正确性,比较两者结果的差异,分析产生差异的原因,加深对理论的理解,这是照着现成的例子练习所作不到的。

  当然,并不就说书上的例子毫无用处,多多看下书上的例子可以对ANSYS的整个分析问题的过程有比较清楚的了解,还可以借鉴一些处理问题的方法。

  1.4 保持带着问题去看ANSYS是怎样处理相关问题的良好习惯 可能平时在看关于ANSYS的参考书籍时,对其中如何处理各种复杂问题的部分,看起来觉得也并不是很难理解,而一旦要自己处理一个复杂的非线性问题时,就有点束手无策,不知道所分析的问题与书上的讲的是怎么相关的。说明要将书上的东西真正用到具体的问题中还不是一件容易的事情。带着问题去看ANSYS是怎样处理相关问题的部分,可能是解决以上问题的一个好方法:当着手分析一个复杂的问题时,首先要分析问题的特征,比如一个二维接触问题,就要分析它是不是轴对称,是直线接触还是曲线接触(三维问题:是平面接触还是曲面接触),接触状态如何等等,然后带着这些问题特征,将ANSYS书上相关的部分有对号入座的看书,一遇到与问题有关的介绍就其与实际问题联系起来重点思考,理解了书上东西的同时问题也就解决了,这才真正将书上的知识变成了自己的东西,比如上个问题,如果是轴对称,就需要设置KEYOPT(3),如果是曲线接触就要设置相应的关键字以消除初始渗透和初始间隙。可能就会有这样的感慨:原来书上已经写得很清楚了,以前看书的时候怎么就没什么印象了。

  如果照着这种方法处理的问题多了的话,就会进一步体会到:其实,ANSYS的使用并不难,基本上是照着书上的说明一步一步作,并不需要思考多少问题,学ANSYS真正难得是将一个实际问题转化成一个ANSYS能够解决且容易解决的问题。这才是学习ANSYS所需要解决的一个核心问题,可以说其他一切问题都是围绕它而展开的。对于初学者而言,注重的是ANSYS的实际操作,而提高“将一个实际问题转化成一个ANSYS能够解决且容易解决的问题” 的能力是一直所忽视的,这可能是造成许多人花了很多时间学ANSYS,而实际应用能力却很难提高的一个重要原因。

  1.5熟悉GUI操作之后再来使用命令流

  ANSYS一个最大的优点是可以使用参数化的命令流,因而,学ANSYS最终应非常熟练的使用命令流,一方面,可以大大提高解决问题的效率;另一方面,只有熟悉命令流之后,才会更方便的与人交流问题。

  老师一开始讲授ANSYS时往往把ANSYS吹得天昏地暗,其中一条必定是夸ANSYS的命令流是如何的方便,并且拿GUI与命令流大加对比一番。问题也确实如此,但对那些积极性相当高且有点好高骛远的同学可能就会产生误导:最终是要掌握命令流,学了GUI还去学命令流多麻烦诺,干脆直接学命令流算了,不是可以省很多事吗?如将这种想法付诸于实践的话往往是适得其反,不仅掌握命令流的效率底,而且GUI又不熟悉,结果使用ANSYS处理问题来就有点无所适从,两头用得都不爽。因此,初学者容易一心想着使用命令流,忽视对GUI操作的练习,难以认识到命令流与GUI的联系:没有对GUI的熟练操作要掌握好命令流是很难的,或者代价是很高的。

  直接去学命令流之所以难,一个是命令太多,不易知道那些命令是常用的,那些是不常用的,我们只要掌握最常用的就足够了,而如果GUI使用得多的话,就会很清楚那些命令是常用的(实现的目的一样),以后掌握命令流就有了针对性;另一个是一个命令的参数太多,同一个命令,通过参数的变化可以对应不同的GUI操作,事先头脑里没有GUI印象的话,对参数的变化可能就没有很多的体会,难以加深对参数的理解。因此,建议初学者不用管命令,踏踏实实的熟悉GUI操作,当GUI操作达到一定程度后,再去掌握命令流就是一件很容易的事情,当然也需要大量的练习。实际上,大多数使用者而言,基本上是将GUI操作与命令流结合起来使用,没有人会完全用命令流解决问题的,因为没有必要去记那么多命令,有些操作GUI用起来更加直观方便。一般而言,前处理熟悉使用命令流比较方便,求解控制里面使用GUI比较好。

  此外,还有一点初学者也需注意,一开始学ANSYS主要是熟悉ANSYS软件,掌握处理问题的一般方法,不是用它来解决很复杂的问题来体现你的能力有多强,一心只想着找有难度的问题来着,往往容易被问题挂死在一棵树上而失去了整片森林。因此,最好多找些容易点的,涉及到不同类型问题的题来做练习。

  2 一些ANSYS的使用经验

  ANSYS的使用主要是三个方面,前处理——建模与网格划分,加载设置求解,后处理,下面就前两方面谈一下自己的使用经验。

  2.1前处理——建模与网格划分  要提高建模能力,需要注意以下几点:

  建议不要使用自底向上的建模方法,而要使用自顶向下的建模方法,充分熟悉BLC4,CYLIND等几条直接生成图元的命令,通过这几条命令参数的变化,布尔操作的使用,工作平面的切割及其变换,可以得到所需的绝大部分实体模型,由于涉及的命令少,增加了使用的熟练程度,可以大大加快建模的效率。 对于比较复杂的模型,一开始就要在局部坐标下建立,以方便模型的移动,在分工合作将模型组合起来时,优势特别明显,同时,图纸中有几个定位尺寸,一开始就要定义几个局部坐标,在建模的过程中可避免尺寸的换算。 注重建模思想的总结,好的建模思想往往能起到事半功倍的效果,比如说,一个二维的塑性成型问题,有三个部分,凸模,凹模,胚料,上下模具如何建模比较简单了,一个一个建立吗?完全用不着,只要建出凸凹模具的吻合线,用此线分割某个面积,然后将凹模上移即可。

  对于面网格划分,不需要考虑映射条件,直接对整个模型使用以下命令,MSHAPE,0,2D MSHKEY,2 ESIZE,SIZE 控制单元的大小,保证长边上产生单元的大小与短边上产生单元的大小基本相等,绝大部分面都能生成非常规则的四边形网格,对于三维的壳单元,麻烦一点的就是给面赋于实常数,这可以通过充分使用选择命令,将实常数相同的面分别选出来,用AATT,REAL,MAT,赋于属性即可。

  对于体网格划分,要得到比较漂亮的网格,需要使用扫掠网格划分,而扫掠需要满足严格的扫掠条件,因此,复杂的三维实体模型划分网格是一件比较艰辛的工作,需要对模型反复的修改,以满足扫掠条件,或者一开始建模就要考虑到后面的网格划分;体单元大小的控制也是一个比较麻烦的事情,一般要对线生成单元的分数进行控制,要提高划分效率,需要对选择命令相当熟悉;值得注意的是,在生成网格时,应依次生成单元,即一个接着一个划分,否则,可能会发现有些体满足扫掠的条件却不能生成扫掠网格。

  2.2 加载求解 对于有限元模型的加载,相对而言是一件比较简单的工作,但当施加载荷或边界条件的面比较多时,需要使用选择命令将这些面全部选出来,以保证施加的载荷和边界条件的正确性。

  在ANSYS求解过程中,有时发现,程序并没有错误提示,但结果并不合理,这就需要有一定的力学理论基础来分析问题,运用一些技巧以加快问题的解决。对于非线性分析,一般都是非常耗时的,特别是当模型比较复杂时,怎样节约机时就显得尤为重要。当一个非线性问题求解开始后,不用让程序求解完后,发现结果不对,修改参数,又重新计算。而应该时刻观察求解的收敛情况,如果程序出现不收敛的情况,应终止程序,查看应力,变形,等结果,以调整相关设置;即使程序收敛,当程序计算到一定程度也要终止程序观看结果,一方面可能模型有问题,另一方面边界条件不对,特别是计算子模型时,数据输入的工作量大,边界位移条件出错的可能性很大,因而要根据变形结果来及时纠正数据,以免浪费机时,如果结果符合预期的话,可通过重启动来从终止的点开始计算。下面举两个例子说明:

  在做非均匀材料拉伸模拟材料颈缩现象的有限元数值计算时,对一个标准试件,一端固定,另一端加一个X方向的位移,结果发现在施加X方向的位移的一排节点产生了很大的Y方向位移,使得节点依附的单元变形十分扭曲,导致程序不收敛而终止,而中间的单元并没有太多变化。显然,可以分析在实验当中施加X方向的位移的一排节点是不应有Y方向的位移的,为了与实验相符应消除Y方向的位移,可同时施加一个Y方向的零约束,重新计算,结果得到了比较理想的颈缩现象,并可清楚的看到45度剪切带。