电梯行程问题基本练习题及分析

时间:2021-08-31

电梯行程问题基本练习题及分析

  1.小偷与警察相隔30秒先后逆向跑上一自动扶梯,小偷每秒可跨越3级阶梯,警察每秒可跨越4级阶梯。已知该自动扶梯共有150级阶梯,每秒运行1.5级阶梯,问警察能否在自动扶梯上抓住小偷?答:_____。

  分析:全部以地板为参照物,那么小偷速度为每秒1.5级阶梯,警察速度为每秒2.5级阶梯。警察跑上电梯时相距小偷1.5×30=45级阶梯,警察追上小偷需要45秒,在这45秒内,小偷可以跑上1.5×45=67.5级阶梯,那么追上小偷后,小偷在第 112~第113级阶梯之间,没有超过150,所以警察能在自动扶梯上抓住小偷。

  2.在商场里甲开始乘自动扶梯从一楼到二楼,并在上向上走,同时乙站在速度相等的并排扶梯从二层到一层。当甲乙处于同一高度时,甲反身向下走,结果他一共走了60级,如果他一直走到顶端再反身向下走,则一共要走80级,那么,自动扶梯不动时从下到上要走多少级?

  分析:向上走速度为甲和自动扶梯的速度和,向下走速度为甲和自动扶梯的.速度差。

  当甲乙处于同一高度时,甲反身向下走,结果他一共走了60级,如果他一直走到顶端再反身向下走,则一共要走80级,

  60÷80=3/4,这说明甲乙处于同一高度时,甲的高度是两层总高度的3/4。则甲和自动扶梯的速度和与自动扶梯的速度之比是3/4: (1-3/4)=3:1,即甲的速度与自动扶梯速度之比2:1,甲和自动扶梯的速度差与自动扶梯的速度相等。向下走速度向上走速度的1/3,所用时间为向上走的3倍,则甲向下走的台阶数就是向上走台阶数的3倍.因此甲向上走了80÷(3+1)=20级台阶。甲的速度与自动扶梯速度之比2:1,甲走20级台阶的同时自动扶梯向上移动了10级台阶,因此如果自动扶梯不动,甲从下到上要走20+10=30级台阶。

【电梯行程问题基本练习题及分析】相关文章:

1.《解决行程问题的策略》教学反思

2.《价格和行程问题》教学设计范文

3.《论语》练习题及分析

4.《故乡》练习题及分析

5.解决行程问题的策略数学学科教学反思

6.解决行程问题的策略数学教学反思

7.《解决问题的策略——行程》数学教学反思

8.电梯惊魂小学作文