《多边形的内角和与外角和》的说课稿

时间:2021-08-31

《多边形的内角和与外角和》的说课稿

  各位领导,各位老师大家下午好,很高兴有机会参加这次教学研究活动。

  我的教学设计是华师大版七年级数学(下)第八章第三节"多边形的内角和与外角和"。根据新的课程标准,我从以下七个方面说一下本节课的教学设想:

  一, 教材分析

  从教材的编排上,本节课作为第八章的第三节是承上启下的一节,在内容上,从三角形的内角和到四边形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,知识联系性比较强,特别是教材中设计了一些"想一想""试一试""做一做"等内容,体现了课改的精神。在编写意图上,编者有意从简单的几何图形入手,让学生经历探索,猜想,归纳等过程,发展了学生的合情推理能力。

  二, 学生情况

  学生上节课刚刚学完三角形的内角和,对内角和的问题有了一定的认识,加上七年级的学生具有好奇心,求知欲强,互相评价互相提问的积极性高。因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,因此把这节课设计成一节探索活动课是切实可行的。

  三, 教学目标及重点,难点的确定

  新的课程标准注重学生所学内容与现实生活的联系,注重学生经历观察,操作,推理,想象等探索过程。根据新课标和本节课的内容特点我确定以下教学目标及重点,难点

  【知识与技能】掌握多边形内角和与外角和定理,进一步了解转化的数学思想

  【过程与方法】经历质疑,猜想,归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。

  【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。

  【教学重点】多边形内角和及外角和定理

  【教学难点】转化的数学思维方法

  四, 教法和学法

  本次课改很大程度上借鉴了美国教育家杜威的"在做中学"的理论,突出学生独立数学思考活动,希望通过活动使学生主动探索,实践,交流,达到掌握知识的目的',尤其是本节课更是一节难得的探索活动课,按新的课程理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"及初一学生的特点,我确定如下教法和学法。

  【课堂组织策略】利用学生的好奇心,设疑,解疑,组织活泼互动,有效的教学活动,鼓励学生积极参与,大胆猜想,积极思考,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。

  【学生学习策略】明确学习目标,在教师的组织,引导,点拨下进行主动探索,实践,交流等活动。

  【辅助策略】利用多媒体课件展示三角形内角和向多边形内角和转化,突破这一教学难点,另外利用演示法,归纳法,讨论法,分组竟赛法,使不同学生的知识水平得到恰当的发展和提高。

  五, 教学过程设计

  整个教学过程分五步完成。

  1, 创设情景,引入新课

  首先解决四边形内角的问题,通过转化为三角形问题来解决。

  2,合作交流,探索新知。

  更进一步解决五边形内角和,乃至六边形,七边形直到N边形的内角和,都能用同样的方法解决。学生分组讨论。

  3, 归纳总结,建构体系。

  多边形内角和已得出,对外角和更是水到渠成,这时要适当的总结,让学生自己得到零散的知识体系。

  4, 实际应用,提高能力。

  "木工师傅可以用边角余料铺地板的原因是什么 "这既是对本节所学知识在现实生活中的应用,又是本章第一节的延伸,同时也为下节打下了一个铺垫

  5, 分组竞赛,升华情感

  四组不同难度的电子试卷,既巩固本节课所学的知识,又使学生本节课产生的激情得以释放。

  六, 板书设计

  板书本节课学生所需掌握的知识目标:即多边形内角和与外角和定理

  七, 创意说明

  本节课在知识上由简单到复杂,学生经历质疑,猜想,验证的同时,在情感上,由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科个性得以张扬,教师稍加点拨,适可而止,把更多的思考空间留给学生。

【《多边形的内角和与外角和》的说课稿】相关文章:

1.多边形的内角和与外角和教学反思

2.《多边形的内角和与外角和》教学反思

3.多边形的内角和与外角和导学案PPT课件公开课实录

4.《多边形的内角和》的说课稿

5.《多边形的内角和》说课稿

6.多边形的内角和与外角和同步练习题

7.多边形的内角和与外角和随堂练习题

8.《探索多边形的内角和与外角和》的课程教学设计