八年级《不等式及其基本性质》说课稿

时间:2021-08-31

八年级《不等式及其基本性质》说课稿

  作为一名辛苦耕耘的教育工作者,就不得不需要编写说课稿,写说课稿能有效帮助我们总结和提升讲课技巧。那么写说课稿需要注意哪些问题呢?下面是小编收集整理的八年级《不等式及其基本性质》说课稿,希望能够帮助到大家。

  《不等式的基本性质》它是北师大版八年级下册第二章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:

  本节内容不等式的基本性质,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。

  根据《新课程标准》的要求,教材的内容兼顾我班学生的特点,我制定了如下教学目标:

   知识与技能:

  1. 感受生活中存在的不等关系,了解不等式的意义。

  2. 掌握不等式的基本性质。

   过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。

   情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。

   教学重难点:

  重点:不等式概念及其基本性质

  难点:不等式基本性质3

   教法与学法:

  1. 教学理念: “ 人人学有用的数学”

  2. 教学方法:观察法、引导发现法、讨论法.

  3. 教学手段:多媒体应用教学

  4. 学法指导:尝试,猜想,归纳,总结

  根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。下面我将具体的教学过程阐述一下:

  一、复习导入新课

  上课开始,我首先带领学生学习本节课的教学目标,让学生明白本节课学习的目标。

  1.探索并掌握不等式的基本性质,并运用它对不等式进行变形.

  2.理解不等式性质与等式性质的联系与区别.

  3.提高观察、比较、归纳的能力,渗透类比的思想方法.

  二、探求新知,讲授新课

  第一部分:学前练习

  1. -7 ≤ -5, 3+4>1+4

  5+3≠12-5, x ≥ 8

  a+2>a+1, x+3 <6

  (1)上述式子有哪些表示数量关系的符号?这些符号表示什么关系?

  (2)这些符号两侧的代数式可随意交换位置吗?

  (3)什么叫不等式?

  目的:设计该部分是为了让学生上新课之前先回顾一下上节课学习的内容。

  第二部分:探究新知:

  1.商场A种服装的价格为60元,B种服装的价格为80元

  (1)两种服装都涨价10元,哪种服装价格高?涨价15元呢?

  (2)两种服装都降价5元,哪种服装价格高?降价15元呢?

  (3)两种服装都打8折出售,哪种服装价格高?

  2.已知 4 > 3,填空:

  4×(-1)——3 ×(-1)

  4×(-5)——3 ×(-5)

  目的:设计该部分的目的是为了引出不等式的.基本性质做铺垫。

  第三部分:不等式的基本性质的探究

  1:填空: 60 < 80

  60+10 80+10

  60-5 80-5

  60+a 80+a

  性质1,不等式的两边都加上(或减去)同一个整式,不等号的方向不变.

  2:填空(1):60 < 80

  60 ×0.8 80 ×0.8

  填空(2): 4 > 3

  4×5 3×5

  4÷2 3÷2

  性质2,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

  3:填空: 4 > 3

  4×(-1) 3×(-1)

  4×(-5) 3×(-5)

  4÷(-2) 3÷(-2)

  性质3,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

  三、小结不等式的三条基本性质

  1. 不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;

  2. 不等式两边都乘(或除以)同一个正数,不等号的方向不变;

  3.*不等式两边都乘(或除以)同一个负数,不等号的方向改变 ;

  与等式的基本性质有什么联系与区别?

  四、典型例题

  例1.根据不等式的基本性质,把下列不等式化成x<a或x>a的形式:

  (1) x-2< 3 (2) 6x< 5x-1

  (3) 1/2 x>5 (4) -4x>3

  解:(1)根据不等式基本性质1,两边都加上2,

  得: x-2+2<3+2

  x<5

  (2)根据不等式基本性质1,两边都减去5x,

  得: 6x-5x<5x-1-5x

  x<-1

  例2.设a>b,用“<”或“>”填空:

  (1)a-3 b-3 (2) -4a -4b

  解:(1) ∵a>b

  ∴两边都减去3,由不等式基本性质1

  得 a-3>b-3

  (2) ∵a>b,并且-4<0

  ∴两边都乘以-4,由不等式基本性质3

  得 -4a<-4b

  五、变式训练:

  1、已知x<y,用“<”或“>”填空。

  (1)x+2 y+2 (不等式的基本性质 )

  (2) 3x 3y (不等式的基本性质 )

  (3)-x -y (不等式的基本性质 )

  (4)x-m y-m (不等式的基本性质 )

  2、若a-b<0,则下列各式中一定成立的是( )

  A.a>b B.ab>0

  C. D.-a>-b

  3、若x是任意实数,则下列不等式中,恒成立的是( )

  A.3x>2x B.3x2>2x2

  C.3+x>2 D.3+x2>2

  六 、小结

  七、作业的布置

  八、 以上是我对这节课的教学的看法,希望各位专家指正。谢谢!

【八年级《不等式及其基本性质》说课稿】相关文章:

1.《不等式及其基本性质》说课稿设计

2.不等式及其基本性质测试题及答案

3.八年级《不等式的基本性质》评课稿

4.数学《不等式基本性质》教学设计

5.《分式及其基本性质》教学反思

6.分式及其基本性质课件

7.《分数基本性质》说课稿

8.不等式及其解集之说课稿