初一数学合并同类项说课稿

时间:2021-08-31

  一、教材分析:

初一数学合并同类项说课稿

  1、教材所处的地位及作用:

  本节课选自新人教版数学七年级上册§2.2节,是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题。合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上;在合并同类项过程中,要不断运用数的运算。可以说合并同类项是有理数加减运算的延伸与拓广。因此,这节课是一节承上启下的课。

  2、情分析:

  七年级学生刚刚跨入少年期,理性思维的发展还有很有限,他们在身体发育、知识经验、心理品质方面,依然保留着小学生的天真活泼、对新生事物很感兴趣、求知欲望强、具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱。于是我根据学生和中小学教材衔接的特点设计了这节课。

  二、教学目标:

  1.知识目标:

  (1)使学生理解多项式中同类项的概念,会识别同类项。

  (2)使学生掌握合并同类项法则。

  (3)利用合并同类项法则来化简整式。

  2.能力目标:

  (1)、在具体的情景中,通过观察、比较、交流等活动认识同类项,了解数学分类的思想;

  并且能在多项式中准确判断出同类项。

  (2)、在具体情景中,通过探究、交流、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的运算,体验化繁为简的数学思想。

  3.过程与方法:组织学生参与学习、讨论,在合作探究活动中获取知识。

  4.情感态度与价值观:激发学生的求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦。

  三、教学重点、难点:

  根据学生的认知水平、认知能力以及教材的特点,确定以下重、难点:

  重点:同类项的概念、合并同类项的法则及应用。

  难点:正确判断同类项;准确合并同类项。

  四、教学方法与教学手段:

  (1)教法分析:

  基于本节课内容的特点和七年级学生的心理特征,我在教学中选择互助式学习模式,与学生建立平等融洽的关系,营造自主探索与合作交流的氛围,共同在实验、演示、操作、观察、练习等活动中运用多媒体来提高教学效率,验证结论,激发学生学习的兴趣。(2)学法分析:

  教学过程是师生互相交流的过程,教师起引导作用,学生在教师的启发下充分发挥主体性作用。七年级的学生,从认知的特点来看,学生爱问好动、求知欲强,想象力丰富,对实际操作活动有着浓厚的兴趣,对直观的事物感知欲较强,是形象思维向抽象思维逐步过渡的阶段,他们希望得到充分的展示和表现,因此,在学习上,应充分发挥学生在教学中的主体能动作用,让学生自己通过观察、类比、活动、猜想、验证、归纳,共同探讨,进行小组间的讨论和交流、利用课件和实物自主探索等方式,激发学习兴趣,培养应用意识和发散思维。

  五、教学过程:

  环节教学设计设计意图

  温

  故

  而

  知

  新1.—5+3=,4—2=.

  2.—2ab的系数是次数是

  3.组成多项式2xy-3xy2+1的项分别为,,.

  4.30米+50米=.复习旧知识,为新知识作铺垫,激发学生的求知欲

  创设情境

  一问题1:

  我们到动物园参观时,发现老虎与老虎关在一个笼子里,熊猫与熊猫关在另一个笼子里。为何不把老虎与熊猫关在同一个笼子里呢?

  问题2:

  (1)在日常生活中,你发现还有哪些事物也需要分类?能举出例子吗?如:垃圾、零钱、水果及各种产品分类.

  (2)生活中处处有分类的问题,在数学中也有分类的问题吗?目的在于引发和提高学生学习的积极性,启发学生的探索欲望,加强学科联系,并注意联系生活,同时为本课学习做好准备和铺垫。

  形成概念

  议一议:

  10a和20a2b2和6b2-9xy和5xy5ab和-13ab 有什么共同点?

  2.思考:归为同类需要有什么共同的特征?(引导学生看书,让学生理解同类项的定义)

  让学生充分发挥主体作用,从自己的视点去观察、归纳、总结得出同类项的概念。

  强化概念

  1、“真真假假”下列每组式子分别是同类项吗?为什么?

  (1)x与y;(2)ab与ab;-3pq与3pq;

  (4)abc与aca与a;(5)ab与abc;

  2、K取何值时,-3xy与-xy是同类项?

  3、填充:(1)在()内填上相应字母,使得2()3()2与-x2y3是同类项;

  (2)若和是同类项,则=;使学生牢固掌握同类项的知识,进一步加强对同类项概念的理解。增强应用意识,培养学生的发散思维。

  创设情景二

  如果一个多项式中含有同类项,那么常常把同类项合并起来,使结果得到简化,那么怎样才能把同类项合并起来呢?请同学们思考下面的问题?以生活实例为切入点,通过对简单的、熟悉的数量运算,激发学生学习合并同类项的欲望,从而较自然的引入新课题。

  练问题1:

  3ab+5ab=_______理由是________

  -4xy2+2xy2=_______理由是_______

  -3a+2b=理由是_______

  问题2:

  不在一起的同类项能否将同类项结合在一起?为什么?

  例如:6xy-10x2-5yx+7x2

  运用加法交换律和结合律将同类项结合在一起,原多项式的值不变。

  合并同类项:

  把同类项合并成一项就叫做合并同类项

  法则:

  (1)系数:各项系数相加作为新的系数

  (2)字母以及字母的指数不变。

  合并同类项一般步骤:

  6xy-10x2-5yx+7x2———找

  =(6xy-5yx)+(-10x2+7x2)———移

  =(6-5)xy+(-10+7)x2———并

  =xy-3x2

  尝试训练一:

  (1)3x-8x-9x

  (2)5a2+2ab-4a2-4ab

  (3)2x-7y-5x+11y-1

  尝试练习二:

  当x=2,y=3时

  求多项式 的值。

  对比计算:同桌采用两种不同的方法来计算,以得出较优化的方法——先化简,再求值。

  例题:已知a=,b=4,

  求多项式2a2b-3a-3a2b+2a的值.分解难度,设计过渡问题,使学生能自然的感受法则的探索过程。

  以一道例题的训练为桥梁来得出合并同类项的一般步骤。体现新课程中以学生为主,注重学生参与的理念。

  小组共练互批,及时纠错,共同提高。

  求多项式的值,常常先合并同类项,化简后再求值,这样比较简便。

  数学与生活:

  某住宅的平面结构如图所示(墙体厚度不计,单位:米)

  (1)该住宅的使用面积是多少平方米?

  (2)房的主人计划把住宅的地面都铺上地砖,若选用的地砖的价格是30元/平方米,其中x=4,y=3那么买地砖至少需要多少元?

  谈一谈:通过本课的学习你有何收获?

  课堂感悟:

  1、什么叫合并同类项?

  把多项式中的同类项合并成一项,叫合并同类项

  2、合并同类项的法则是什么?

  把同类项的系数相加,所得结果作为系数,字母和字母的指数不变

  必做题:

  1、在下列代数式中,指出哪些是同类项。2x2,0,-3x,-x2y,(x+y)2,xy2,x2y,6x,-x2y,0.5,-x2,2(x+y)2;

  2、合并同类项

  ①3y+2y ②3b-3a3+1+a3-2b

  ③2y+6y+2xy-5 ④6mn+4m2n-3mn+5mn2

  3、填充:(1)在()内填上相应字母,使得2()3()2与5x2y3是同类项;(2)若x3ym和xny2是同类项,则=;(3)若(n-3)x2yz和x2yz是同类项,则;

  选做题:你会玩下面的两个数字游戏吗?游戏步骤:任写一个两位数交换十位和个位数,得到一个新两位数求这两个两位数的和。做完后观察结果,你发现了什么?这个规律对任何一个两位数都成立吗?如果成立,如何说明呢?你能自编一个数学游戏吗?这个游戏有什么特点?与同伴一起玩这个游戏。通过对熟悉的事物,让学生感受到数学就在身边,激发学生想象力,启迪创新,应用意识。

  小组讨论

  进一步让学生巩固基本知识,渗透数学分类思想;使知识结构更完善。

  必做题进一步巩固学生所学知识,及时发现和弥补知识缺陷,起到课后巩固和反馈作用。在第二项作业中利用游戏为下面的学习埋下了伏笔,这样就可以激发学生想象力,启迪创新,应用意识。