充分条件与必要条件第二课时的说课稿

时间:2021-08-31

  一 教材分析:

充分条件与必要条件第二课时的说课稿

  学习数学需全面理解概念,正确地进行表述、判断和推理,这就离不开对逻辑知识的掌握和运用,更广泛地说,在日常生活、工作、学习中,基本的逻辑知识也是认识问题,研究问题不可缺少的工具。作为高中数学起始章节的内容,充要条件在高中数学中地位是最基本,也是最重要的。通过本课学习着重培养学生逻辑思维﹙如理解、判断、推理、归纳等﹚的能力。针对教材依据《数学教学大纲》,结合《数学课程标准》,确定本课教学目标为:

  (1) 使学生初步掌握充要条件;

  (2) 培养学生逻辑思维能力。

  教学重点:关于充要条件的判断.

  从学生学习角度观察,虽有前面所学知识作铺垫,但学生在学习了充要条件并应用所学内容判断p是q的什么条件时,仍存在易混淆、思路不够清晰等问题,针对如上情况,确定本课的教学难点: 关于充要条件的判断。本课教学采用以学生为主教师为辅的教学理念,结合学生对本课学习好奇心强这一特点,采用师生互动的教学模式,在轻松的教学氛围中,通过师生间交流合作,引导学生树立锲而不舍、实事求是、一丝不苟的学习理念,同时培养学生对数学的学习兴趣。

  二 过程分析:

  本课教学采取从基本入手,由简到繁,由浅入深的教学思想,设计了复习提问→引入新知 → 辨析 → 巩固强化 → 拓展练习 → 巩固提高 → 小结的教学流程。我将分别就以上各环节说明我的设计意图:

  首先复习两个重要的概念:.充分条件、必要条件定义,及“p=>q”的含义,复习旧知的同时为新知的引入做铺垫,配备练习由旧知做实例开门见山引入充要条件,学生易直观理解本课所学内容,同时抛砖引玉为分散难点:充要条件的判断做准备。

  继而讲述充要条件的定义,并点明思路 :判断p是q的什么条件,不仅要考查p=>q是否成立,即若p则q形式命题是否正确,还要考察q=>p是否成立,即若q则p形式命题是否正确。目的是理清并巩固思路,具有突出重点、分散难点的作用。

  为加强学生辨析能力,同时帮助学生梳理知识体系,配备辨析题并引导学生总结:1) p=>q,但q=>p不成立,则p是q的充分而不必要条件;2) q=>p,但p=>q不成立,则p是q的必要而不充分条件;3)p=>q 且q=>p ,则p是q的充要条件;4)p=>q不成立且q=>p也不成立,则 p是q的既不充分也不必要条件。强调:判断p是q的什么条件,不仅要考虑p=>q是否成立,同时还要考虑q=>p是否成立。且p是q的什么条件,以上四种情况必具其一。设计思想加强学生辨析及归纳能力同时进一步巩固思路,达到强调重点、分散难点的作用。

  由例一巩固强化学生认知体系同时进一步引导学生观察归纳:当p、q分别以集合A、B出现时:

  若A B但B不包含于A,即A 是B的真子集,则p是q的充分而不必要条件

  若A B 但A 不包含于B, 即B是A的真子集,则p是q的必要而不充分条件

  若A B且B A ,即A=B , 则p是q的充要条件

  若A不包含于B,且B不包含于A ,则p是q的既不充分也不必要条件,继而师生共同总结判断p是q的什么条件的方法有:1 判断p=>q及q=>p是否成立;2 集合观点。以达到进一步丰富和完善学生认知体系目的。

  通过拓展练习给学生自我发展空间,建立师生交流平台并进一步巩固完善学生认知体系(如举反例在说明“a>b”是“a >b ”的充分条件是假命题时应用)同时激发学生学习数学兴趣。

  经过复习提问→拓展练习等教学环节,在简单的例题和练习及轻松教学环境中学生基本掌握本课教学重点,解决本课难点,并有愿望探索更深层次问题时,配备巩固提高题开阔学生视野,充分调动学生主观能动性,开展师生对话,使学生明确旧知(如“若p则q”命题与其逆否命题“若┑q则┑p”同真假)在解决新问题中的应用,以进一步丰富和完善学生认知体系,并完成培优工作。

  通过小结这一环节帮助学生梳理知识体系,进一步强调本课教学重点,最后布置作业督促学生练习,培养学生运用所学知识独立解决问题能力,为教师了解学生对所学知识掌握情况作载体,从而进一步完善教学、补差、及课后反思等工作。

  三 课后反思:

  ﹙1﹚本课学习是为今后进一步学习其他知识作准备,随着后续章节的学习,对逻辑知识的应用将越来越广泛和深入,相应的对逻辑知识的理解和掌握水平也将越来越高,同时学生的认知是一循序渐进的过程,片面地强调求难,求偏均不能很好的完成本课教学任务,因此本课教学一定要从学生实际和教科书的具体内容出发,提出恰如其分的教学要求,避免一步到位。

  (2)依据《大纲》,本课内容教学约2课时,本章小结与复习约3课时。在约定课时内。不仅让全体学生掌握基本的逻辑知识和思维,同时还要为同学们特别是中等及中上学生的后继学习及其个体独立深入研究搭桥铺路,有意配备具有巩固提高性质的三道题,不仅补充题型,扩展学生知识面,使学生认识到旧知与新知的联系,同时点拨思路,引导学生思维纵深发展。解题难度不大,可能因刚接触,少部分学生存在理解困难等问题,但随学生后继学习巩固及学生认知规律特点 ,基本能达到本题最初设计意图,因此,巩固提高题有必要放入本课教学计划中。经实践,效果较好。