《二次函数的图象和性质》教学设计

时间:2021-08-31

《二次函数的图象和性质》教学设计

  教学目标:

  1.能够利用描点法作出函数y=x2的图象,能根据图象认识和理解二次函数y=x2的性质.

  2.猜想并能作出y=-x2的图象,能比较它与y=x2的图象的异同.

  3.经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.

  4.在利用图象讨论二次函数的性质时,让学生尽可能多地合作交流,以便使学生能够从多个角度看问题,进而比较准确地理解二次函数的性质.

  教学重点:

  1.利用描点法作出函数y=x2的图象,根据图象认识和理解二次函数y=x2的性质.

  2.能够作出二次函数y=-x2的图象,并能比较它与y=x2的图象的异同.

  教学难点:

  经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.并把这种经验运用于研究二次函数y=-x2的图象与性质方面,实现探索经验运用的思维过程.

  教学过程:

  一、学前准备

  我们在学习了正比例函数,一次函数与反比例函数的定义后,研究了它们各自的图象特征.知道正比例函数的图象是_______________,一般的一次函数的图象是____________,反比例函数的图象是_________________.上节课我们学习了二次函数的一般形式为_________________________,那么它的图象是否也为直线或双曲线呢?本节课我们将一起来研究有关问题.

  二、探究活动

  (一)、作函数y=x2的图象.

  回忆画函数图象的一般步骤吗?(列表,描点,连线.)

  下面就请大家按上面的步骤作出y=x2的图象.

  (1)列表:

  x -3 -2 -1 0 1 2 3

  y 9 4 1 0 1 4 9

  (2)在直角坐标系中描点.

  (3)用光滑的,曲线连接各点,便得到函数y=x2的图象.

  (二)、议一议

  对于二次函数y=x2的图象, (1)你能描述图象的形状吗?与同伴进行交流.

  (2)图象与x轴有交点吗?如果有,交点坐标是什么?

  (3)当x0时,随着x值的增大,y的值如何变化?当x0时呢?

  (4)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?

  (5)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并交流.

  下面我们系统地总结:

  (三)y=x2的图象的`性质.

  二次函数y=-x2的图象是什么形状?先想一想,然后作出它的图象.它与二次函数y=x2的图象有什么关系?与同伴进行交流.

  大家讨论之后系统地总结出y=x2的图象的所有性质.

  当堂练习:按照画图象的步骤作出函数y=-x2的图象.

  y=-x2的图象如右图,并让学生总结:

  形状是___________,只是它的开口方向____________,它

  与y=x2的图象形状________,方向________,这两个图形可

  以看成是__________对称.

  试着让学生讨论y=-x2的图象的性质.

  并尝试比较y=x2与y=-x2的图象,比较异同点.

  不同点:

  相同点:

  联系:

  (四)课堂练习: 随堂练习(P47)

  三.学习体会

  1.本节课你有哪些收获?你还有哪些疑问?

  2.你认为老师上课过程中还有哪些须改进的地方?

  3.预习时的疑问解决了吗?

  四.自我测试

  1.在同一直角坐标系中画出函数y=x2与y=-x2的图象.

  2.下列函数中是二次函数的是 ( )

  A. y=2+5x2 B.y= C.y=3x(x+5)2 D. y=

  3.分别说出抛物线y=4x2与y=- x2的开口方向,对称轴与顶点坐标

  4、已知函数y=mxm2+m.

  (1)m取何值时,它的图象开口向上.

  (2)当x取何值时,y随x的增大而增大.

  (3)当x取何值时,y随x的增大而减小.

  (4)x取何值时,函数有最小值.

【《二次函数的图象和性质》教学设计】相关文章:

1.二次函数的图象和性质教学设计

2.二次函数的图象和性质练习题

3.二次函数的性质和图像教学设计

4.一次函数的图象和性质教学设计

5.一次函数的图象和性质教学反思

6.《反比例函数的图象和性质》教学反思

7.反比例函数的图象与性质教案教学设计

8.一次函数的图象和性质教案设计