《解简易方程》教学设计

时间:2021-08-31

  教学内容:教科书第109页的例2、例3,完成第109页下面的“做一做”中的题目和练习二十七的第1~4题。

  教学目的:使学生理解和初步学会ax±b = c这一类简易方程的解法,认识解方程的意义和特点。

  教学重点:会ax±b = c这一类简易方程的解法,认识解方程的意义和特点。

  教学难点:看图列方程,解答多步方程。

  教具准备:电教平台。

  教学过程:

  一、导入

  1、出示三个小动物,让学生围绕三个小动物提提出问题进行学习。

  二、新课

  1.教学例2。

  出示小老鼠的问题:

  出示例2。先让学生自己读题,理解题意。

  教师:这道题的第一个要求是“看图列方程”。我们来共同研究一下,怎样根据图意列出方程。我们学过方程的.含义,谁能说说什么是方程呢?

  学生:含有未知数的等式叫做方程。

  教师:那么,要列方程就是要列出什么样的式子呢?

  学生:列出含有未知数的等式。

  教师:观察这副图,从图里看出每盒彩色笔有多少支?(x支。)3盒彩色笔有多少支?(3x支。)另外还有多少支?(4支。)一共有多少支彩色笔?(40支。)那么,怎样把这副图里的数量关系用方程(也就是含有未知数x的等式)表示出来呢?

  学生:3x+4 = 40。

  教师:很好!谁能再说说这个方程表示的数量关系?

  学生:每盒彩色笔有x支,3盒彩色笔加上另外的4支,一共是40支。

  教师:对!我们现在来讨论一下如何解这个方程。如果方程是x+4 = 40,可以怎么想?根据什么解?

  学生:可以把原方程看作是“加数+加数 = 和”的运算,因此,根据“加数 = 和-另一个加数”来解。

  这样也可以根据“加数 = 和-另一个加数”来解。得出3x = 40-4,再得出3x = 36。

  教师在黑板上板书出解此方程的前两步,下面的解法让学生自己做在练习本上。做完以后,集体订正。得出方程的解以后,要求学生在算草纸上进行检验。请一位学生口述检验过程,集体订正。

  教师小结例2的解法:解答例2,先要根据图里的数量关系列出方程,即列出含有未知数x的等式;然后解这个方程。解方程时,关键是要先把3x看作是一个数,根据“加数 = 和-另一个加数”求出3x等于多少,再求x等于多少就得出方程的解是多少。

  2.教学例3。

  小猫提出的问题:

  教师出示:解方程18-2x = 5。然后让学生自己在练习本上解。做完以后,教师指名让学生回答问题。

  教师:这个方程你是怎么解的?先怎样做,再怎样做,根据是什么?(先把2x看作一个数,再根据“减数 = 被减数-差”得出2x = 18-5,2x = 13,x = 6.5。)

  教师根据学生的发言,把解方程的过程出示。接着,教师出示例3:解方程6×3-2x = 5。

  教师:例3的方程与我们刚才解的方程,有什么相同点,有什么不同点?

  学生:相同点是:等号右边都是5,等号左边都要减去2x;不同点是:18-2x = 5的等号左边只有一步运算,而6×3-2x = 5的等号左边有两步运算。

  教师:6×3-2x = 5,等号左边的两步运算,第一步是算6×3,就等于18。这样方程6×3-2x = 5就变成了18-2x = 5。所以,解方程6×3-2x = 5,要按照运算顺序,先算出6×3的值。那么,下一步该怎样做呢?刚才我们已经做过,自己把方程6×3-2x = 5解出来。

  让学生在练习本上解例3,同时请一位同学在黑板上解题。做完以后,集体订正。

  教师小结例3的解法:解答例3,要先按照四则运算的顺序,把方程中包含的计算算出,再把2x看作一个数,根据四则运算各部分间的关系来求解。

  3.课堂练习。

  做教科书第109页下面“做一做”中的题目。

  先让学生独立做在课堂练习本上,教师行间巡视,检查学生解方程的过程是否正确,发现错误及时纠正。做完以后,指名让学生说一说解方程的根据和过程。

  三、巩固练习(小兔子提出的问题)。

  1.做练习二十七的第1题第一行的两小题。

  先让学生独立做在练习本上,教师行间巡视,仍然要注意检查学生解方程的过程、书写格式及检验的过程是否正确,发现错误及时纠正。做完以后,每一题让学生说一说解的过程和解题的根据。

  2.做练习二十七的第2题。

  教师用小黑板或投影片出示题目,让两位学生到黑板前来解题,其他学生在练习本上解题。做完以后,指名让学生比较这两个方程的异同点,解法的异同点。

  3.做练习二十七的第4题。

  让一位学生读题后,教师提问:这道题应该怎样做?能不能先解方程,分别求出两个方程的解,再判断上面的五个数中哪两个数是这两个方程的解?(可以。)

  让学生独立做在练习本上,做完以后,集体订正。

  四、小结。

  出示课题:解简易方程。

【《解简易方程》教学设计】相关文章:

1.《解简易方程》试题

2.解简易方程教学反思

3.《解简易方程的巩固练习》教学设计

4.解简易方程练习题

5.解简易方程说课稿

6.解简易方程数学课件

7.《解简易方程》说课稿

8.解简易方程的说课稿