工程问题是研究工作总量、工作效率和工作时间三者之间关系的一个数学问题。它与研究这三个量之间关系的整数工作问题的解题思路相同,不同的是工程问题的工作总量和工作效率没有直接指明,解题时要用单位“1”表示工作总量,用单位时间内完成工作总量的几分之一表示工作效率。这是工程问题的基本特征也是教学难点。在教学中我努力创设情境,先安排了一道工作总量已知的比较简单的工程问题的应用题。例如:工程队修一条长1800米的公路,甲队单独做需要12天完成,乙队单独做需要12天完成。甲、乙合作需要几天完成?让学生进行解答,在此基础上,让学生说说你是怎么想的?又是怎么做的?然后,我把工作总量1800米该为3600米,让学生猜一猜,现在甲、乙合作需要几天完成呢?学生们非常激动,有的说,太简单了,不用计算我就知道了;有的学生把手举的高高,想回答。有的学生切切私语。我马上让学生回答,第一个学生回答的是工作总量是原来的2倍,那么,合作工作时间肯定是原来的2倍。第二个学生马上回答说合作工作时间和原来的是一样的。乘此机会,我又追问你有办法证明合作时间没有变吗?这为学生马上说有。于是他用了刚才的这种计算方法证明了工作时间没变,其他学生心服口服。而后,我又问学生如果工作总量变900米,现在甲、乙合作需要几天完成呢?当我问题一说出,学生就说,现在不会上当了,当然还是和原来的一样啦?那么就请你们计算一下?计算出来结果还是和原来一样。于是,我就设下疑问,为什么工作总量变了,合作的工作没变呢?通过四人小组合作,并交流,然后,在小结时我又把学生说的用多媒体展示了一下,这样学生明白了工作总量不管怎样变化,只要两队单独完成的工作时间没变,两队合作的工作时间也是不变的道理。在此基础上,我将工作总量抽象为“一项工程”,由此导入新课,然后,让学生进行尝试练习。
总之,在整个教学过程中,我以学生学习的组织者、帮助者、促进者出现在他们的面前,学生不仅发挥了他们的自主潜能,培养了他们的探索能力,而且激发了学生学习兴趣。学生学的开心,教师教的快乐。