《圆环的面积计算》课堂教学反思

时间:2021-08-31

  同学们例3这道题还有什么不同的方法来解答?

《圆环的面积计算》课堂教学反思

  3.14×52-3.14×42

  你对这种算法,有什么看法?

  我认为这算法是第一种分步计算的综合式

  能用综合算式是一大进步,谁还有更简单的方法?

  3.14×(52-42)

  多简便,只用两步,你们知道这样算的理由是什么?

  这里运用了乘法分配律,这种算法是第二种方法的简便计算。

  你真会学运用知识,大家同意他的想法吗?(齐:同意)

  我还有一种好办法!(学生很兴奋地)3.14×(5+4)!

  请你说说你的想法

  我是看出来的,52-42=5+4

  我们验证一下。

  是不是其他的算式也有这样的规律,请你验证下,比如:62-52是否与6+5相等;102-82是否与10+8相等

  我们试了,第一题行,第二题是不行的

  我们看出,两数相差1时,行的,差2就有行了

  你的意思我明白,但表达上有问题,应该说当两数相差1时,两个算式相等,当两数相差2时,两处算式不相等,我们应该用规范的语言来表达。

  那么,请大家算一算,多少?

  102-82等于36

  36与10、8有什么联系?

  36=(10+8)×2

  2与10、8有什么联系?

  10减8等于2师写公式,你能举例说明吗?我们写了几个算式能证明这处算式成立,52-32=(5+3)×(5-3)122-82=(12+8)×(12-8)

  大家是不是都认为这样的算式是成立的?(齐:同意)

  那么请你用一句话来概括你们所发现的规律!

  [课后反思]

  本课的教学任务是引导学生理解圆环面积的计算方法,学会计算圆的面积,而在实际的课堂教学中却不知不觉中让学生经历了平方差公式推导验证的过程,这本来是初中的数学知识,可是无意在小学的数学课堂上生成了,我顺着学生的思路,在师生互动的教学过程中让学生体验了一回发现数学,生成数学的感受。