关于圆柱和圆锥的教学反思

时间:2021-08-31

  新课之后综合复习了圆柱和圆锥部分的知识以后,练习题也做了不少,可我发现许多同学仍然在某些题上频繁出错,或隔一段时间再做就会出错,我仔细分析了一下,发现他们还是没有真正理解题意,怎么办呢?经过思索,我终于发现,问题的根源在于我,在于我的引导方法不对,如:

  一台压路机的前轮是圆柱形,轮宽1.5米,直径1.2米,

  (1)前轮转动一周,前进了多少米?

  (2)如果每分钟滚动15周,压过的路面是多少平方米?

  对于这样一道题,我总觉得学生理解起来应该不难,因此每次只是抽学生回答一下:

  第一小题其实是求什么?(底面圆的周长)第二小题求的是什么?(圆柱的侧面积)。并没有多想学生理解不理解。而每每做这道题时效果都十分不理想。后来,经过反复思索,询问学生为什么出错,知道了原因,找出症结。我的引导还是过于含糊了,因此,在下节课中,在讲评这道题中,我随手拿起学生的一本数学书,请孩子们也跟我来,一起演示压路机的前轮滚动的情况,边演示边指:前进了多少米是求的哪一部分的长,而压路的面积是求哪一部分的面积,这样形象直观,学生很容易接受,同时我告诉学生,以后遇到你不理解的情况,也要积极想办法,如画图、利用手中的书本等帮助自己化抽象为形象,从而化难为易,强化思维灵敏度,增强理解力,而不能不加思考去拼凑算式,盲目作题。这样可以进一步提高学生的空间观念。

  再如,把一块底面半径2厘米,高6厘米的圆柱形橡皮泥,捏成一个与圆柱底面相等的圆锥形,你知道它的高吗?

  大部分学生会通过计算,即先求圆柱形的体积,再利用体积相等的关系,用体积乘3,再除以底面积来做,但,当我把底面半径2厘米去掉以后,学生很难分清到底乘3还是除以3,为此,我很是头疼。

  怎么办?背公式吗?学生记不住,也限制了思维的发展。后来,我发现一个孩子在纸上画图,我受到了启发:是啊,当它们体积相等时,学生可以在纸上画图,凭直觉就能发现,当底面积也相等时,要让体积相等就要把圆锥的高画长,圆锥的高肯定是圆柱的3倍,而高相等时,圆锥的底面积应为圆柱底面积的3倍。接着,我又在黑板上画了个相反的情况:试想,当它们体积相等时,如果底面积也相等,而圆锥的高如果说画成圆柱的1/3,会是什么样子呢?我画上以后,学生哈哈大笑,学生的开怀大笑的同时也轻松掌握了这一方法。同时在画的过程中学生总结出:等体等底的圆锥的高是圆柱高的3倍,等体等高的圆锥的底面积是圆柱底面积的3倍。以后,在这类题上就很少出错了。

  通过以上方法,我也深深体会到,数学教学不能光“说”不“做”,要不,学生记住的,也是一些死答案。我们在教学中要善于诱导学生挖掘解题策略与方法,善于总结提炼一些有用的结论,获得高效学习,让学生轻松获得数学知识。